論文 合成面形状が異なる UFC パネルを用いた合成柱部材の軸圧縮性状に 関する研究

野口 博之*1・水口 和彦*2・阿部 忠*3・澤野 利章*4

要旨:本研究は,UFC パネルの合成面形状に着目して 2 種類の UFC パネルを用いた帯鉄筋間隔の異なる UFC・RC 合成柱部材を製作して軸圧縮力載荷実験を行い,UFC パネルの合成面形状が軸圧縮性状に及ぼす影 響について検証した。その結果,RC 柱部材および UFC・RC 合成柱部材ともに帯鉄筋間隔の違いにより圧縮 耐荷力に違いが確認された。また,圧縮耐荷力において UFC・RC 合成構造とすることで RC 合成柱部材に対 して 1.34~1.57 倍の耐荷力の向上が得られることが明らかになった。さらに,UFC パネルの合成面の面積比 率を変化させることで UFC パネルと RC 柱部材との一体性が向上し,圧縮耐荷力が高まる結果となった。 キーワード:UFC・RC 合成柱,UFC パネル,合成面形状,軸圧縮性状

1. はじめに

近年,建設現場において建設就業者の減少および高齢 化などの問題が数多く報告され、コスト縮減を図るため に施工の合理化・省力化が求められている¹⁾。また,構 造部材においてはひび割れなどの疲労損傷が顕在化して おり,海岸線部では飛来塩分による塩害により鉄筋腐食 や断面欠損が報告されている^{2),3)}。

これらの事例に対し、施工の合理化・省力化を図る工 法として従来のコンクリート型枠の脱型を省略して型枠 とコンクリートを一体化させるプレキャスト埋設型枠を 用いた施工法が採用されている。一方、コンクリート構 造物の耐荷力性能および耐疲労性の向上を目的としたコ ンクリート系材料として,高い圧縮強度および曲げ強度, 中性化や凍結融解作用などの環境要因に対して優れた抵 抗性を有する超高強度繊維補強コンクリート 4)(以下, UFC とする)を用いた埋設型枠 ⁵などのコンクリート 2 次製品および取替床版のの開発が精力的に行われている。 埋設型枠として高性能埋設型枠(以下, UFC パネルとす る)を用いた工法が提案され、水口ら⁷は UFC パネルを 用いた RC 合成柱部材の有効性を検討することを目的と して帯鉄筋間隔の異なる同一寸法の UFC・RC 合成柱部 材および通常の RC 柱部材を作製し、柱部材として最も 基本的性能である軸方向圧縮耐荷力に対する検討を行い, その有用性を評価した。

本研究は、UFCパネルとRC柱との合成面形状に着目 し、合成面形状が異なる2種類のUFCパネルを帯鉄筋 間隔の異なるRC柱と合成したUFC・RC合成柱部材を 製作して軸圧縮力載荷実験を行い、UFCパネルの合成面 形状の違いによる軸圧縮性状に及ぼす影響について検証 し、UFC・RC 合成柱部材の実用性について検討する。

2. UFC パネルの概要

2.1 UFC パネルの特徴

UFC は最密充填に近づくように粒度調節がなされて いることから鋼繊維や有機繊維を混合する前後で流動性 に変化はなく自己充填機能を有している。また,減水剤 を多量に使用していることから,打設後は,常温で24~ 48時間程度の養生(1次養生),その後48時間は90度 の蒸気養生(2次養生)を要する。

2 次養生後は、初期ひび割れが生じた後も混入した繊 維の架橋効果によってひび割れが抑制され、曲げ抵抗が 増大し、最大応力到達後にも延性的な曲げ特性を示す。 また、付着強度が高く、繊維の弾性率が高いため、初期 ひび割れ後に応力の一時低下や急激な変位増加をするこ となく曲げ抵抗が増大する。

本実験に用いる UFC パネルの特徴は 15~30mm 程度 の薄肉であることから制作が容易である。また,高強度 で極めて緻密な硬化体構造であるために,塩分などの腐 食性因子の浸透を遮断,凍害によるコンクリート表面の 劣化進行の抑制,耐衝撃性に優れている。また,RC部材 との合成面の構造は UFC パネルに凹凸を設けることに より RC 部材との一体性が図られ,合成構造の有効断面 として機能させることが可能である ^{7,8}。

2.2 UFC パネルの合成面形状

UFC パネルと RC 柱部材の合成効果を高めるために型 枠の付着面については数多くの研究が行われ、様々な合 成面形状が検討されている^{7),8)}。そこで本研究では UFC パネル側の合成面形状として凹部を一様に設けた P タイ

*1 日本大学 生産工学部土木工学科助手 博士(工学) (正会員)
*2 日本大学 生産工学部土木工学科教授 博士(工学) (正会員)
*3 日本大学 名誉教授 博士(工学) (正会員)
*4 日本大学 生産工学部土木工学科教授 工学博士 (正会員)

プ(面積比率:UFCパネル側60%, コンクリート側40%), 凸型を一様に設けた C タイプ(面積比率:UFCパネル側 40%, コンクリート側60%)の2種類のUFCパネルを製 作し,合成面形状の違いが軸圧縮性状に及ぼす影響を検 証する。なお, P タイプおよび C タイプは付着面厚を5mm とし,突起形状をそれぞれ φ9mm, φ15mm とする。ここ で,本実験に用いた2種類のUFCパネルの合成面形状 および寸法を図-1に示す。

3. 実験概要

3.1 使用材料

(1) RC 柱部材

RC 柱部材のコンクリートには普通ポルトランドセメ ントと最大骨材寸法 20mm の粗骨材,最大骨材寸法 5mm の細骨材を使用する。コンクリートの圧縮強度はコンク リート標準示方書に規定されるコンクリート設計基準強 度 30N/mm²を満足する配合条件とする。また,鉄筋は主 鉄筋に SD345, D10,帯鉄筋に SD345A, D6を用いる。 ここで,コンクリートの示方配合を表-1,コンクリート および使用した鉄筋の材料特性値を表-2に示す。

(2) UFC·RC 合成柱部材

UFC・RC 合成柱部材のコンクリート部および鉄筋には RC 柱供試体と同様の材料とする。ここで、コンクリート の示方配合を表-1、コンクリートおよび使用した鉄筋 の材料特性値を表-2 に併記する。

UFC パネルには、水、ポリカルボン酸系の高性能減水 剤、プレミックス材料(密度 2.76g/cm³)および φ0.2mm、 長さ 15mm の鋼繊維(密度 7.84g/cm³)を使用する。なお、 プレミックス材料にはセメント、シリカヒューム、硅石 粉末などが最密充填されるように配合されており、粗骨 材は使用せずに最大粒径 2mm の硅砂を配合する。ここ で、UFC パネルの配合条件および材料特性値を表-3 に 示す。

3.2 供試体寸法および鉄筋配置

(1) RC 柱供試体

RC 柱部材の供試体およびコア寸法は、現行コンクリ

表-1 コンクリートの配合条件

ſ	供試体			単位体積量 (kg/m ³)				高性能AE減水剤			
		W/C (%)	S/a (%)	W	С	s	G	A (kg)	B (ml)	C (kg/m ³)	
I	RC	49.4	51.7	166	336	953	865	2.18	13		
ſ	UFC·RC	45.0	47.0	160	356	838	949	_		3.03	

表-2 コンクリートおよび鉄筋の材料特性値

	コンクリート	鉄筋 (SD345A)						
供試体	. E縮強度 (N/mm ²)	使用 鉄筋径	降伏強度 (N/mm ²)	引張強度 (N/mm ²)	ヤング係数 (kN/mm ²)			
P.C.	55.2	D10	368	510	200			
ĸc	55.5	D6	355	499	200			
LIEC D	42.2	D10	365	510	200			
UrC-r	42.3	D6	355	499	200			
	41.2	D10	365	510	200			
UFC-C		D6	355	499	200			

表-3 UFC パネルの配合条件および材料特性

W/B		単位体積	🗄 (kg/n	圧縮強度	ヤング係数		
(%)	W	Premix	SF	高性能 減水剤	(N/mm ²)	(kN/mm ²)	
9.2	180	2,250	158	29	200.2	55.0	

ート標準示方書⁹に基づき設計する。供試体寸法は外寸 150×150×600mm, コア寸法は 110×110mm とする。公称 帯鉄筋間隔は 200mm, 150mm, 100mm, 75mm の4種類 とし,各1体ずつ製作する。供試体名称は、それぞれ RC-200, RC-150, RC-100, RC-75 と称する。ここで, RC 柱 部材の寸法および鉄筋配置を図-2 に示す。

(2) UFC·RC 合成柱供試体

UFC・RC 合成柱供試体は、外寸 150×150×600mm の箱 形形状とし、UFC パネルの厚さは 15mm とする。また、 RC 柱部材との付着性能を高めるために合成面形状とし て P タイプ, C タイプの 2 種類の UFC パネルを用いて 合成面形状が軸圧縮性状に及ばす影響を明らかにする。 RC 部は現行コンクリート標準示方書に基づいて設計し, RC 部の寸法は 120×120×600mm, コア寸法は 110×110mm とする。公称帯鉄筋間隔は 150mm, 100mm, 75mm の 3 種類とし、UFC パネルの合成面形状ごとに 1 体ずつ製作 する。供試体名称は P タイプの UFC パネルを用いた供 試体をそれぞれ UFC-P150, UFC-P100, UFC-P75, C タイ プの UFC パネルを用いた供試体をそれぞれ UFC-C150, UFC-C100, UFC-C75 とする。ここで, UFC・RC 合成柱部 材の寸法および鉄筋配置を図-2 に併記する。

3.3 UFC パネルを用いた RC 合成柱部材の施工手順

UFCパネルを用いた RC 合成柱部材の施工手順を図-3 に示す。図-1 に示す突起形状を設けた鋼製金型を箱 形形状に加工した型枠を用いて UFCパネルを製作(図-3(1)) し、1 次養生を行う。1 次養生終了後、型枠の脱型 (図-3(2)) を行い2 次養生する。その後、予め組立て

(4) 鉄筋配置(5) コンクールの打込み図-3UFC・RC 合成柱の施工手順

た鉄筋 (図-3(3)) を UFC パネル内に挿入 (図-3(4)) して,内部にコンクリートを打込み (図-3(5)) し,一体 構造とする。なお,コンクリート打込み後は通常の RC 柱 部材と同様に養生する。

3.4 荷重載荷方法

軸力載荷実験には、載荷能力 5,000kN の構造物試験機 を用いる。ここで、軸力方向荷重載荷の試験状況を図-4 に示す。供試体は下部を固定、上部は球座を介し、載 荷板が供試体の全断面に載荷する様に試験機に設置する。 載荷方法は、軸力方向に荷重を 20kN ずつ載荷させる段 階荷重載荷とし、500kN を1サイクルとする。また、サ イクル後ごとに荷重を 0kN まで減少させる包絡荷重とし て供試体が破壊に至るまで荷重の増減を繰り返し行う。

4. 結果及び考察

4.1 実験最大耐荷力

実験より得られた各供試体の最大耐荷力および耐荷力 比を表-4 に示す。なお,耐荷力性能については帯鉄筋 間隔が異なる同一シリーズ供試体,同一帯鉄筋間隔の供 試体および UFC パネルの合成面形状による耐荷力を比

表-4 最大耐荷力および耐荷力比

(1) 向ーシリースにおける比較検討							
供試体		実験最大耐荷力 (kN)	耐荷力比				
	RC-200	1,225.3	_				
B Ctt	RC-150	1,286.6	1.05				
KC小工	RC-100	1,372.2	1.12				
	RC-75	1,507.1	1.23				
Dタイプを用いた	UFC-P150	1,412.6	—				
Pワイフを用いた LEC・PC会成柱	UFC-P100	1,422.8	1.01				
	UFC-P75	1,487.6	1.05				
でタイプを用いた	UFC-C150	1,515.6	_				
	UFC-C100	1,590.4	1.05				

(2) 同一帯鉄筋間隔における比較検討

1,720.2

1.13

UFC-C75

/++	-=+/+-	実験最大耐荷力	耐荷力比				
识	;武伴	(kN)	UFC/RC	C type/P type			
帯鉄筋	RC-150	1,286.6	_				
間隔	UFC-P150	1,412.6	1.10				
150mm	UFC-C150	1,515.6	1.18	1.07			
帯鉄筋	RC-100	1,372.2	_				
間隔	UFC-P100	1,422.8	1.04	_			
100mm	UFC-C100	1,590.4	1.16	1.12			
帯鉄筋	RC-75	1,507.1	_				
間隔	UFC-P75	1,487.6	0.98	_			
75mm	UFC-C75	1,720.2	1.34	1.16			

較し,評価する。

(1) RC 柱供試体

RC 柱供試体の最大耐荷力は供試体 RC-200 で 1,225.3kN,供試体 RC-150 で 1,286.6kN,供試体 RC-100 で 1,372.2kN,供試体 RC-75 で 1,507.1kN である。また, 帯鉄筋間隔 200mmの供試体 RC-200 を基準として最大耐 荷力を比較すると供試体 RC-150, RC-100, RC-75 でそれ ぞれ 1.05 倍, 1.12 倍, 1.23 倍の耐荷力の増加が見られる。

(2) UFC·RC 合成柱供試体

Pタイプを用いた UFC・RC 合成柱供試体の最大耐荷力 は供試体 UFC-P150 で 1,412.6kN,供試体 UFC-P100 で

図-5 最大耐荷力と帯鉄筋間隔の関係

1,422.8kN, 供試体 UFC-P75 で 1,487.6kN であり,帯鉄筋 間隔 150mm の供試体 UFC-P150 を基準として最大耐荷 力を比較すると供試体 UFC-P100, UFC-P75 でそれぞれ 1.01 倍, 1.05 倍の耐荷力の増加が見られる。

次に、Cタイプを用いた UFC・RC 合成柱供試体の最大 耐荷力は供試体 UFC-C150 で 1,515.6kN,供試体 UFC-C100 で 1,590.4kN,供試体 UFC-C75 で 1,720.2kN であり, 帯鉄筋間隔 150mm の供試体 UFC-C150 を基準として最 大耐荷力を比較すると供試体 UFC-C100, UFC-C75 でそ れぞれ 1.05 倍, 1.10 倍の耐荷力の増加が見られる。また, P タイプを用いた UFC・RC 合成柱供試体の耐荷力と比し て供試体 UFC-C150, UFC-C100, UFC-C75 でそれぞれ 1.07 倍, 1.12 倍, 1.16 倍と耐荷力の向上が確認される。これ は, UFC パネルとコンクリート柱との合成面の面積比率 を変化させることで耐荷力の向上が図られるものと推察 される。

4.2 実験最大耐荷力と帯鉄筋間隔の関係

実験最大耐荷力および帯鉄筋間隔の関係を図-5 に示 す。最大耐荷力と帯鉄筋間隔の関係に示すように, RC 柱 供試体の最大耐荷力は帯鉄筋間隔が密になるにつれて増 加することが確認される。これは,主鉄筋と帯鉄筋の格 子効果によって横拘束が与えられるため耐荷力性能を向 上させることに繋がることを示している。

Pタイプを用いた UFC・RC 合成柱供試体は帯鉄筋間隔 が密になるにつれて最大耐荷力の増加が見られるものの RC 柱供試体と比して増加傾向が緩やかとなっている。 これは、UFC パネルの横拘束効果が帯鉄筋の横拘束効果 と比して小さいためと推察される。また、ひび割れの伸 展により合成面の定着力が低下し、UFC パネルでの荷重 分担が大きくなるためと推察される。一方、C タイプを 用いた UFC・RC 合成柱供試体の最大耐荷力は RC 柱供試 体と同様に帯鉄筋間隔が密になるにつれて増加している ことが確認される。これは、主鉄筋と帯鉄筋による横拘 束効果と UFC パネルとコンクリート柱との合成面の面 積比率に関してコンクリート側の面積比率が高いことか

図-5 荷重とひずみの関係

ら合成面の定着力の向上, すなわち帯鉄筋と UFC パネル の横拘束力が相乗したため耐荷力が向上したものと推察 される。

4.3 荷重とひずみの関係

荷重と主鉄筋および帯鉄筋のひずみの関係を図-6 に 示す。なお、RC 柱供試体、P タイプおよび C タイプを用 いた UFC・RC 合成柱供試体の主鉄筋および帯鉄筋の降 伏ひずみは材料特性値より、RC 柱供試体の主鉄筋が 1840×10⁻⁶、帯鉄筋が 1775×10⁻⁶、UFC・RC 柱供試体の主鉄 筋が 1825×10⁻⁶、帯鉄筋が 1775×10⁻⁶である。

(1) 荷重と主鉄筋ひずみの関係

RC 柱供試体の荷重と主鉄筋ひずみの関係は図-6(1) に示すように、各供試体ともに、荷重の増加に伴い主鉄 筋ひずみが線形的に増加している。また、帯鉄筋間隔が 拡がるにつれて初期段階での主鉄筋ひずみの増加傾向が 大きくなる。その後、降伏ひずみ(=1840×10⁻⁶)に達する 付近からひずみの増加傾向が変化し、荷重の増加に伴い ひずみが著しく増加する。しかし、帯鉄筋間隔を密にな ることで横拘束力が高まり、主鉄筋ひずみが降伏後も大

供試体	コア・コンクリート 圧縮強度	実験最大耐荷力 (kN)	補正耐荷力 (kN)		耐荷力比 (UFC/RC)	理論耐荷力 (kN) RC:式(1), UFC:式(2)		耐荷力比 (実験値/理論値)	
	(N/mm)		Pタイプ	Cタイプ		Pタイプ	Cタイプ	Pタイプ	Cタイプ
RC-200		1,225.3	931.2	919.0	_	908	899	1.03	1.02
RC-150	55.3	1,286.6	977.8	965.0	—			1.08	1.07
RC-100		1,372.2	1,042.9	1,029.2	—			1.15	1.14
RC-75		1,507.1	1,145.4	1,130.3	—			1.26	1.26
UFC-P150		1,412.6			1.44	2,000	—	0.71	_
UFC-P100	42.3	1,422.8	—	_	1.36			0.71	—
UFC-P75		1,487.6			1.30			0.74	_
UFC-C150		1,515.6	_	_	1.57	_	1,986	_	0.76
UFC-C100	41.2	1,590.4	_	_	1.55			_	0.80
UFC-C75		1,720.2	_	_	1.52			_	0.87

表-5 実験最大耐荷力および理論耐荷力

きな変形を示していることから柱部材全体での変形性能 およびじん性が向上していることが確認される。

次に、Pタイプおよび Cタイプを用いた UFC・RC 合成 柱供試体は降伏ひずみ (=1825×10⁻⁶) に達した後も線形的 にひずみが増加している。また、RC 柱供試体で確認され た帯鉄筋間隔が及ぼすひずみの増加傾向において、帯鉄 筋間隔の違いによる差異は見られない。これは、高強度 を有する UFC パネルによって軸方向剛性ならびに横拘 束力が高まることから軸方向力に対する変形が抑制され たものと推測される。

(2) 荷重と帯鉄筋ひずみの関係

RC 柱供試体の荷重と帯鉄筋ひずみの関係は図-6(2) に示すように、荷重の増加に伴いひずみが線形的に増加 している。また、主鉄筋と同様に帯鉄筋間隔が拡がるに 伴ってひずみの増加傾向が大きくなる。これは、帯鉄筋 間隔を密にすることでコア・コンクリートの膨張を複数 の帯鉄筋が共働して抑制することから、分散効果が発揮 されてひずみの増加が抑制されるものと考えられる。

次に, Pタイプおよび Cタイプを用いた UFC・RC 合成 柱供試体は RC 柱供試体と同様に荷重の増加に伴いひず みが線形的に増加している。帯鉄筋の拘束効果について は帯鉄筋間隔を密にすることでひずみの増加を若干抑制 することができるが顕著な差異は確認されない。

5. 軸方向圧縮耐荷力の検討⁹⁾

RC 柱の軸方向圧縮力の評価ならびに設計には, コン クリート標準示方書 ⁹で規定されている設計軸圧縮耐荷 力の上限値(以下,上方限界耐力とする) N'oud と設計軸 圧縮荷重 N'a との比が構造物係数 yi と軸方向圧縮力を受 ける部材の軸方向圧縮耐荷力係数(=1.0~1.2)より小さく ならないように,軸圧縮荷重を受ける部材を設計しなけ ればならない。また,設計曲げモーメント Ma と設計軸圧 縮荷重 N'a との比 Ma/N'a がごく小さい部材の終局抵抗力 は,施工段階での部材の不整合初期誤差によって生じる 僅かな曲げモーメント増加によっても大きく低下する %。 このような問題を避けるために、上方限界耐力が設定さ れると伴に部材係数 1.3 が採用されている。ここで、軸 圧縮耐荷力を受ける部材における上方限界耐力 N'oud は、 帯鉄筋を使用する場合、式(1)として与えられている %。

 $N'_{oud} = (K_1 \times f_{cd} \times A_C + f_{yd} \times A_{st})/\gamma_b$ (1) ここで、 A_c : コンクリートの断面積 (mm²)、 A_{st} : 軸方 向鉄筋の全断面積 (mm²)、 f_{cd} : コンクリートの設計圧縮 強度 (N/mm²)、 f_{yd} : 軸方向鉄筋の設計圧縮降伏強度 (N/mm²)、 K_1 : 強度の低減係数 (=1-0.003 f_{ck} <0.85)、 f_{ck} : コンクリート強度の特性値 (N/mm²)、 γ_b : 部材係数 (一 般に 1.3)

次に、UFC・RC 合成柱の上方限界耐力の算出に関して は、簡易的な算出方法として、コンクリート標準示方書 で規定されている式(1)を基本とし、式(1)における左辺の コンクリート分担能に UFC の断面積と圧縮強度による UFC の分担能を考慮した式(2)より評価することとした。

 $N'_{oud-UFC} = \{K_1(f_{cd} \times A_C + f'_{UFC} \times A_{UFC}) + f'_{yd} \times A_{st}\}/\gamma_b$ (2) ここで、 A_{UFC} : UFC の全断面積 (mm²)、 f'_{UFC} : UFC の 設計圧縮強度 (N/mm²)

また、本実験における RC 柱供試体と UFC・RC 合成柱 供試体との耐荷力の比較を行うにあたっては、コア・コン クリートの圧縮強度に差異が生じていることから、この 点を考慮する必要がある。そこで本実験では、コンクリ ートの圧縮強度の違いを補正係数 γ (γ_1 =P タイプ用いた UFC・RC 合成柱の圧縮強度/RC 柱の圧縮強度 =42.3/55.3=0.76, γ_2 =C タイプを用いた UFC・RC 合成柱の 圧縮強度/RC柱の圧縮強度=41.2/55.3=0.75)として算出し、 実験より得られた耐荷力に補正係数 γ を乗じたものを補 正耐荷力と定義して評価する。ここで、式(1)、(2)より算 出した結果を表-5 に示す。

(1) RC 柱供試体

RC 柱供試体の実験最大耐荷力に補正係数 y (y1=0.76) を乗じた供試体 RC-200, RC-150, RC-100, RC-75 の補正 耐荷力はそれぞれ 931.2kN, 977.8kN, 1,042.9kN, 1,145.4kN となる。また,式(1)より算出した理論耐荷力は 942.0kN となっており,補正耐荷力と比較すると供試体 RC-200, RC-150, RC-100, RC-75 でそれぞれ 1.03 倍, 1.08 倍, 1.15 倍, 1.26 倍となる。

次に, RC 柱供試体の実験最大耐荷力に補正係数 y (y2=0.75)を乗じた供試体 RC-200, RC-150, RC-100, RC-75 の補正耐荷力はそれぞれ 919.0kN, 965.0kN, 1,029.2kN, 1,130.3kN となる。また,式(1)より算出した 理論耐荷力は 899.0kN となっており,補正耐荷力と比較 すると供試体 RC-200, RC-150, RC-100, RC-75 でそれぞ れ 1.02 倍, 1.07 倍, 1.14 倍, 1.26 倍となる。

RC 柱供試体において,帯鉄筋間隔が密になるほど主 鉄筋と帯鉄筋の横拘束効果が増大し,高耐荷力に繋がる。 逆に,帯鉄筋間隔が拡がるにつれて横拘束効果は効果を 示さず,帯鉄筋柱に対する基本設計式である式(1)によっ て与えられる上方限界耐力に接近する結果となった。

(2) UFC·RC 合成柱供試体

P タイプを用いた UFC・RC 合成柱供試体 UFC-P150, UFC-P100, UFC-P75 の実験最大耐荷力と補正係数 γ

(y1=0.76) を乗じた RC 柱供試体 RC-150, RC-100, RC-75 の補正耐荷力を比較するとそれぞれ 1.44 倍, 1.36 倍, 1.30 倍と耐荷力の向上が確認される。次に、C タイプを 用いた供試体 UFC-C150, UFC-C100, UFC-C75 の耐荷力 とRC 柱供試体の実験最大耐荷力に補正係数 y(y2=0.75) を乗じた供試体 RC-150, RC-100, RC-75 を比較するとそ れぞれ 1.57 倍. 1.55 倍, 1.52 倍と耐荷力の向上が確認さ れる。一方,式(2)より算出した P タイプおよび C タイプ の理論耐荷力はそれぞれ 2,000kN, 1,986kN となってお り, Pタイプ供試体および Cタイプ供試体の耐荷力と比 較して 0.71~0.74 倍, 0.76~0.87 倍となり, 理論値を実 験値が下回る結果となった。これは、軸圧縮力の載荷に より発生するひび割れによって UFC パネルとコンクリ ートとの合成面の付着性能が低下し、一体性を持って抵 抗できなくなることから全断面で荷重を分担できずに UFC パネルのみで荷重を分担したためと推察される。こ の点について詳細な検討が必要である。

6. まとめ

(1) RC 柱供試体および UFC・RC 合成柱供試体ともに 帯鉄筋間隔の縮小に伴い,最大耐荷力は線形的な増 加がみられる。このことから,矩形断面柱において は,UFC パネルのコア・コンクリートに対する横方 向拘束効果は帯鉄筋の拘束効果に比べ小さいこと が分かる。

- (2) Cタイプの UFC パネルを用いた供試体と P タイプ の UFC パネルを用いた供試体の耐荷力の比較を行 うと,供試体 UFC-C150, UFC-C100, UFC-C75 でそ れぞれ 1.07, 1.12, 1.16 倍の耐荷力の向上がみられ る。したがって, UFC パネル合成面を凸型(C型) の構造とし,UFC とコンクリートとの面積配分を変 えることで耐荷力の向上が図れる。
- (3) 荷重とひずみの関係より,RC 柱供試体では帯鉄筋 間隔が密となるほど主鉄筋ひずみの降伏後も大き な変形を呈していることから,帯鉄筋間隔を小さく することでじん性の向上が図られる。一方,UFC・ RC 合成柱供試体は帯鉄筋間隔の違いによる変形の 差異は見られない。これは,UFC パネルによって軸 方向剛性が高まるため軸方向力に対する変形が抑 制されたと考えられる。
- (4) コンクリートの圧縮強度の違いを補正係数として 適用した実験耐荷力を比較した結果,UFCを用いた 合成構造とすることで 1.30~1.57 倍の軸圧縮耐荷 力の向上が確認された。

参考文献

- 国土交通省大臣官房技術調査課:i-Construction~建設 現場革命,i-Construction委員会,2016.
- 2) (公社) 土木学会:道路橋床版の維持管理マニュアル 2020, 2020.10
- 3)国土交通省道路局国道·技術課:橋梁定期点検要領, 2019.3
- 4) (公社) 土木学会: 超高強度繊維補強コンクリート設計・
 施工指針(案), 2007.
- 5) 牧隆輝,田中敏嗣,阿部忠,木田哲量: RPC 製埋設型 枠を用いた RC はりの載荷試験,コンクリート工学年 次論文集, Vol.27, No.1, pp.289-294, 2005.7
- 6)一宮利通,大野俊夫,野口孝俊,南浩郎:超高強度繊維補強コンクリートを用いた床版の打設方法が構造性能に及ぼす影響に関する研究、コンクリート工学年次論文集,Vol.30,No.3, pp.1453-1458, 2008.7
- 7)水口和彦,阿部忠,木田哲量,室橋竜太:UFC・RC合成柱部材および RC 柱部材の破壊メカニズムと軸圧縮 性状に関する実験研究,セメント・コンクリート論文 集,No.66, pp.545-551, 2013.3
- 8) 阿部忠,新見彩,木田哲量,田中敏嗣:走行荷重が作 用する UFC 埋設型枠 RC 床版の最大耐荷力および耐久 性に関する研究,日本材料学会,材料, Vol.58, No.7, pp.619-626, 2009.6
- 9) (公社)土木学会:コンクリート標準示方書[設計編: 本編], 2017.