論文 異なるダイアフラム形式を有するコンクリート充填鋼管短柱のせん 断破壊性状に関する実験的研究

中原 浩之*1・松竹 光太郎*2・摺木 悠人*2・森下 詢太*3

要旨: 角形断面を有する12体のコンクリート充填鋼管柱のせん断破壊実験を実施した。断面形状は、6体が 長方形、6体が正方形である。6体が通しダイアフラム形式、6体が外ダイアフラム形式の短柱試験体である。 軸力比をパラメータとして、これらに繰返しせん断力を載荷して、その荷重-変形関係を得た。また、実験の 最大耐力を、日米で提案されている2通りの計算法と比較し、前者は安全側、後者は危険側の評価となった。 キーワード:軸力比、ミーゼスの降伏条件、せん断降伏、曲げ降伏

1. はじめに

CFT 柱は,通常の建物に使用されるプロポーションでは,曲げ破壊が先行する。しかしながら,これが極端に短くなった場合は,せん断破壊する可能性があり,せん断スパン長さ *a* と柱せい *D* の比 *a*/*D*(せん断スパン比)が 1.0 以下の試験体を用いた実験研究が,進められてきている^{1) 2)}。

当研究室では、2013 年度より角形断面を有する CFT 短 柱を対象に、一定軸力下で繰返しせん断力を与える実験 を実施してきた³⁾⁴⁾。実験で得られた最大強度は、「コ ンクリート充填鋼管構造設計施工指針」⁵⁾に示される終 局せん断耐力式(以下、指針式と呼ぶ)で計算される値 と比較されている。

これまでの実験では、CFT 柱に円柱状の加力治具を試 験体に接触させて、直接せん断力を載荷していたが、実 際の建築構造の柱の場合は、ダイアフラムを通じてせん 断力が導入される。本研究では、通しダイアフラムと外 ダイアフラムを有する CFT 試験体をそれぞれ作製し、加 力実験を実施した。より実際に近い試験体の実験結果を もとに角形断面を有する CFT 短柱の終局せん断耐力に ついて、指針式による計算耐力と比較しながら考察する。 指針式では、ダイアフラム形式の違いによる影響は耐力 式に含まれておらず、本実験の結果と比較することでそ の影響を明らかにする。

また,本研究では,せん断耐力の評価を,日本で用いら れている指針式だけでなく,米国で提案された Roeder ら の設計式⁶⁾を加えた。両者を比較しながら,新しいせん 断耐力式の提案のための基礎資料を提出する。

2. 実験概要

2.1 試験体

図-1 に試験体の形状を示す。図中の斜線部がせん断 破壊する領域である。試験体の両端には軸力を伝達する ためのエンドプレートを溶接している。これの片方には

*1 長崎大学大学院工学研究科 教授・博士(工学) (正会員)

*3 長崎大学工学部工学科 学部生

充填コンクリート打設用の孔を,また両方に軸力を導入 するための PC 鋼棒を通す 28Φ 孔をそれぞれ 4 ヶ所設け ている。

試験体一覧を表-1 に示す。実験変数は、ダイアフラ ム形式・断面形状・軸力比・コンクリート強度・載荷方 法である。鋼管は STKR400 である。

試験体名は以下のルールに従う。

ダイアフラム形式 T:通しダイアフラム,O:外ダイアフラム 断面形状 R:長方形,S:正方形 載荷方法 M:単調載荷,C:繰返し載荷 コンクリート強度 45:45MPa 軸力比 20:0.20

図-1 試験体の形状

表-1 試験体一覧

試験体	ダイヤフラム形式	断面	載荷方法	せん断スパン比 a/D	試験体せいD (mm)	柱幅B (mm)
TRM4520		長方形	単調	0.6	150 -	
TRM4525			繰返し			75
TRC4525						
TSM4513	通しダイヤノフム	正方形	単調			150
TSM4525			繰返し			
TSC4525						
ORM4120		長方形	単調			75
ORC4130			繰返し			
ORC4150	外ダイヤフラム					
OSM4115		正方形	単調			
OSC4128			方形 繰返し			150
OSC4134						

^{*2} 長崎大学大学院工学研究科 大学院生

全試験体で共通のものは,柱せい D の 150mm と全長 L の 1600mm である。せん断スパン比 a/D も,0.60 で一 定としている。

2.2 材料

充填コンクリートは 4 週強度を T45 試験体で 36MPa, O41 試験体で 33MPa になるように調合した。充填コンク リートの諸元は,**表-2**に示す。

鋼管 STKR400 の力学的性質を表-3 に示す。表の値 は、長方形鋼管の場合、その長辺より切り出した試験片 の引張試験から求めたものである。

2.3 実験方法

図-2 に示す装置を用いて試験体に逆対称の変形を与 える加力を行った。

加力法は大野式を採用している。大野型加力装置によ り正負交番繰返し載荷を実施するには、通常多数の油圧 ジャッキを使用することが多いが、本研究で用いる装置 はせん断力が0になる度に、試験体を中心で吊り上げ、 支点位置を点対称に変更する手法により、一つの試験機 だけで正負交番繰返し載荷を可能としている。また、こ の手法により、加力点が試験体中心を通るような芯合わ せを同時に行っている。実験では、まず(5)の油圧ジャッ キを用いて試験体に所定の軸力を導入し、その後、(7)の 試験機床を上昇させて、せん断力を加える。

中央部に与えた載荷力を*P*とし、力のモーメントの釣 合いから式(1)によって試験体に載荷されるせん断力*Q*を 求めることができる。

$$Q = \frac{l}{h+l}P\tag{1}$$

h:中央フランジ間の距離

1: 中央フランジから外側フランジまでの長さ 加力点部分の詳細を, **写真-1** に示す。シリンダーを フランジ厚さ 19mm で切り欠いた鋼製部品を用意して, これを試験体のフランジ部分にはめ込むことで,フラン ジを介してせん断力を載荷する方法にしている。左の写 真は通しダイアフラムを有するフランジ部を示している。 右の写真は外ダイアフラムを有するフランジ部を示して いる。本論ではこの2種類の形式を採用した。

写真-2 に通しダイアフラムを有する試験体,写真-3 に外ダイアフラムを有する試験体を示す。通しダイア フラム形式の試験体は,鋼管のフランジ部分を切り欠い てこの部分にダイアフラムを溶接した。一方で,外ダイ アフラム形式の試験体は,鋼管表面の四周にダイアフラ ムを隅肉溶接した。写真には,これらにせん断力がそれ ぞれ作用した際に発生すると考えられる,充填コンクリ ートの圧縮ストラットを模式的に示している。通しダイ アフラム形式の試験体では,ダイアフラムが内部コンク リートのストッパーの役割を果たし,写真-2のように

表-2 充填コンクリートの諸元

試験体	呼び強度	圧縮強度 (MPa)	ヤング係数 (GPa)	スランプ (cm)	空気量 (%)
T45試験体	36	45.0	32.6	26.7	3.1
041試験体	33	40.9	30.0	23.0	3.5

表-3 鋼管の力学的性質

試験体	降伏強度 (MPa)	降伏ひずみ (%)	引張強度 (MPa)	ヤング係数 (GPa)	降伏比
TRM4520					
TRM4525	354	0.17	424	187	0.83
TRC4525					
TSM4513					
TSM4525	366	0.18	444	200	0.82
TSC4525					
ORM4120					
ORC4130	373	0.18	470	215	0.79
ORC4150					
OSM4115					
OSC4128	373	0.18	452	196	0.83
OSC4134					

写真-1 フランジ部(左: T45, 右: O41)

試験体の破壊領域にコンクリートの圧縮ストラット が形成されると考えられる。一方で、外ダイアフラム形 式の試験体では内部コンクリートのストッパーがないた めコンクリートの圧縮ストラットの勾配は、通しダイア フラム形式のそれより、緩やかになると考えられる。こ の違いがせん断耐力にどう影響するのか考察する。図-3 に変位計の設置位置を示す。変位計 CDP50 と CDP25 を試験体の表と裏に1台ずつ合計4台設置した。ストロ ーク 50mm の CDP50 は試験体中央位置での横方向変位 を、ストローク 25mm の CDP25 は縦方向変位を測定す る。

変位計フレームは、加力梁に接触しないように、加力 梁から外側に十分な距離を取り設置した。また、変位計 はダイアフラムの鋼板に溶接したナットに取り付けてい る。

軸力は PC 鋼棒を介し,油圧ジャッキにより導入し, せん断力は 2000kN 試験機を用いて載荷した。それぞれ の荷重はロードセルで測定した。載荷は,原則として 2 台の変位計から得られる部材角による変位制御とした。

図-4 に試験体に貼り付けたひずみゲージを示す。ひ ずみゲージは、すべて塑性ゲージである。試験体のフラ ンジには1軸、ウェブ部分中央には3軸ゲージを貼り付 けた。フランジの1軸ゲージは、この部分における曲率 を算出して、試験体の反曲点位置を求めることができる。 3 軸ゲージは、試験体中央部におけるせん断ひずみと相 当応力を得ることを目的として貼付している。

3. 荷重-変形関係

試験体の変形には図-4 に示す試験体中央部のウェブ に貼付した3軸ゲージによって計測したせん断ひずみを 用いる。図-5 に各試験体の実験のせん断力 Q-せん断 ひずみ y の関係を示す。図-5 中の△点は鋼管がせん断 降伏した点を,□点は実験の最大せん断力を示している。 鋼管の降伏を判定には,以下の Mises の降伏条件式を用 いた。

 $s\sigma_1^2 - s\sigma_1 s\sigma_2 + s\sigma_2^2 + 3 s\tau_{12}^2 = \sigma_e^2$ (2) $s\sigma_1$: 鋼管の加力方向応力, $s\sigma_2$: 鋼管の軸方向応力 $s\tau_{12}$: 鋼管のせん断応力, σ_e : 相当応力

4. 実験値と計算値との比較

せん断力 Q-軸力比 N/N_0 の関係曲線上に,実験より得られた試験体の最大耐力 Q_{MAX} をプロットしたものを図 -6.a~d に示す。図には、CFT 指針を参照して算定した CFT 柱のせん断耐力 Q_{su} を実線で、同様に CFT 指針を参 照して算定した CFT 柱の曲げ耐力時のせん断力 Q_{bu} を点線で表している。CFT 柱のせん断耐力及び曲げ耐力は、 鋼管柱と無筋コンクリート柱の耐力を一般化累加するこ

写真-2 通しダイアフラム形式の試験体

写真-3 外ダイアフラム形式の試験体

図-3 変位計の設置状況

図-4 ひずみゲージの貼付位置

図-5 各試験体のせん断力 Q-せん断ひずみ γ 曲線

とで求めている。また、図には緑色の一点鎖線で、Roeder らにより提案されているせん断耐力の設計式^の(以下、 Roeder 式と呼ぶ)による計算値を載せている。

図-6よりすべての試験体において、Q_{MAX}はQ_{Su}を上 回っており,Q_{bu}を下回っていることが分かる。ここから, 試験体は曲げ破壊ではなく,せん断破壊により最大耐力 を発揮しているということが確認できる。表-4には実 験値と計算値をまとめて示している。実験値の最大耐力 Q_{MAX}においては,外ダイアフラム形式の試験体より,通 しダイアフラム形式の試験体の方が僅かながら大きいこ とが分かる。

本論では、米国での CFT のせん断耐力の評価法として Roeder 式による計算値 Q_{ro} を取り上げている。この計算 式を以下に示す。

 $Q_{ro} = 2 \cdot 0.6 f_y \cdot 0.5 A_s + 3 \cdot 0.0829 \sqrt{f_c} A_c$ (3) $f_y : 鋼管の降伏強度$ $f_c : コンクリートのシリンダー強度$

 $A_s:$ 鋼管の断面積, $A_c:$ コンクリートの断面積

Roeder 式は、鋼管とコンクリートのせん断強度の単純 累加式であり、軸力が考慮されていない。表-5 には実 験値を計算値 $Q_{su} \ge Q_{ro}$ で除したものの平均と標準偏差 を示している。平均を比較すると、CFT 指針式は、21% 安全側の評価である。一方、Roeder 式は、9%危険側の判 断となっている。また、CFT 指針式の標準偏差は、0.050 で、Roeder 式の 0.082 より小さく、耐力評価のばらつき が少ないことが分かる。

各せん断耐力式における軸力の評価傾向を明らかに するため, 軸力比を横軸にとり, 縦軸に実験値を計算値 で除した値の変化を図-7に示す。図-7.aには, CFT 指 針式による予測精度の変化を、図-7.b には、Roeder 式 による予測精度の変化を載せている。なお点線はプロッ トの回帰直線である。軸力比の影響を考慮している CFT 指針式による予測精度は, Roeder 式と同様に, 軸力比が 増加するにつれて,実験値/計算値が小さくなってゆく傾 向が見られる。本論の実験の軸力比の範囲でいえば、軸 力比の影響は考慮せずとも, せん断耐力の予測のばらつ きは, CFT 指針式も Roeder 式もあまり変わりがない。 そ うであれば、計算が煩雑な CFT 指針の表現より Roeder 式が実用の面で優れているといえる。また Roeder 式は, 実験を過大評価する傾向があり, Roeder 式の鋼管の寄 与を低減することで、新しい CFT 柱のせん断耐力式を提 案できると考えられる。これらを踏まえて、今後は軸力 の影響と鋼管のせん断抵抗を適切に考慮した修正 Roeder 式を提案していく。一方で、軸力比の増大は、CFT 内部のコンクリートのせん断抵抗を増加させる働きがあ る。つまり、コンクリートの強度抵抗の寄与を見る必要 がある。今後は、コンクリート強度をパラメータとした

図-6.a せん断カー軸力比関係(TR45長方形試験体)

図-6.b せん断カー軸力比関係(OR41長方形試験体)

図ー6.c せん断カー軸力比関係(TS45 正方形試験体)

図-6.d せん断カー軸力比関係(OS41 正方形試験体)

実験を計画して試験体を追加し,新たな耐力推定式の 提案を行う。

5. まとめ

本研究では、大野式加力装置を参照した加力装置を 用いてせん断スパン比 *a/D* 0.6 の CFT 短柱に、せん断 力を単調載荷,繰返し載荷する実験実施した。得られた 結果を、以下に列挙する。

- すべての試験体において、実験の最大せん断力は 曲げ耐力時のせん断力を下回り、せん断破壊によ り最大耐力が決定したと考えられる。
- 2) すべての試験体の最大耐力は, CFT 指針のせん断 耐力式により平均で約 20%安全側に評価できる。
- 3) CFT 指針のせん断耐力式と, Roeder 式のせん断耐 力式は, 双方とも軸力比が上昇するにつれて実験値 /計算値が小さくなる。

謝辞

本研究は,H30-32 科学研究費助成事業(基盤 C)「せん 断破壊するコンクリート充填鋼管柱の繰返し水平力下に おける構造性能」(研究代表者:中原浩之,課題番号 18K04434)の助成に基づき実施した。関係各位と実験に 協力いただいた皆様に謝意を表する。

試験体	$Q_{MAX}(kN)$	$Q_{bu}(kN)$	$Q_{su}(kN)$	Q_{MAX}/Q_{bu}	Q_{MAX}/Q_{su}	Ave.
TRM4520	313	346	256	0.90	1.22	
TRM4525	319	347	258	0.92	1.24	
TRC4525	298	347	258	0.86	1.16	1.20
ORM4120	307	342	248	0.90	1.24	
ORC4130	287	340	246	0.84	1.17	
ORC4150	255	299	219	0.85	1.16	1.19
TSM4513	542	696	405	0.78	1.34	
TSM4525	510	716	413	<mark>0.71</mark>	1.23	
TSC4525	508	716	413	0.71	1.23	1.27
OSM4115	495	698	400	0.71	1.24	
OSC4128	482	706	403	0.68	1.20	
OSC4134	460	695	399	0.66	1.15	1.20

表-4 実験値と計算値の比較

図-7.a 実験値/計算値(指針式)

図-7.b 実験値/計算値(Roeder 式)

表-5 実験値/計算値の平均と標準偏差

	Q_{MAX}/Q_{su}	Q_{MAX}/Q_{ro}
平均	1.21	0.91
標準偏差	0.050	0.082

参考文献

- 崎野健治,石橋久義: Experimental Studies on Concrete Filled Square Steel Tubular Short Columns Subjected to Cyclic Shearing Force and Constant Axial Force 日本建 築学会構造系論文報告書,第 353 号, pp.81-91, 1985.
- 中原浩之,津村竜次:コンクリート充填円形鋼管短 柱のせん断挙動に関する実験的研究,日本建築学会 構造系論文集, Vol.79, No.703, pp.1385-1393, 2014.
- 陳瑞涵,中原浩之:角形断面を有するコンクリート 充填鋼管短柱の正負交番せん断力載荷実験,長崎大 学紀要 47(88), pp.47-53, 2017.
- 2019.
 2019.
 2019.
 2019.
 2019.
 2019.
 2019.
 2019.
- 5) 日本建築学会:コンクリート充填鋼管構造設計施工 指針, 2008.
- 6) Roeder, C., Lehman, D., Heid, A., and Maki, T.: Shear Design Expressions for Concrete Filled Steel Tube and Reinforced Concrete Filled Tube Components, WSDOT Research Report, Seattle, Washington, 2016.