論文 新設開口設置に伴い補強した壁式連層耐力壁架構のモデル化手法

向井 智久*1·中村 聡宏*1·有木 克良*1·高橋 良輔*2

要旨:本研究では既存壁式 RC 造建物において新設開口を設置した際の,開口横の耐力壁および開口上部の壁 梁の適切な補強方法とそのモデル化手法を実験により明らかにすることを目的としている。そこで実大の壁 式連層耐力壁架構試験体に対して,連層新設開口を設置するとともに開口周辺の補強を行った架構の静的加 力実験を実施した。また既往の新設開口設置に伴い補強した耐力壁実験¹⁾および壁梁実験²⁾において効果が明 らかな工法を用いた部材の剛性・耐力算定方法を用いて,本試験体に対し増分解析を行った。その結果,耐力 壁構造芯を重心位置とし変動軸力を考慮することで荷重変形角関係を精度よく評価できることを確認した。 キーワード:壁式構造,耐力壁,壁梁,架構,補強,解析モデル,あと施工アンカー

1. はじめに

昭和40年代から昭和50年代前半に多く建設された壁 式 RC 造による集合住宅建物は住戸専用面積などの問題 から現代のニーズにそぐわないものが多く,これを改善 する方法として梁せいの低減や既存の戸境耐力壁に新設 開口を設置することが挙げられる。その際,耐震性能が 低下するため開口周辺部材の補強を行う必要がある。既 往の研究^{1,2)}では壁式 RC 造建物において既存の戸境耐力 壁に新設開口を設置する際に補強を行った開口横の耐力 壁および開口上部の壁梁の実験を実施し,その剛性・耐 力は既往の評価式を用いて安全側に精度よく評価できる ことを確認している。

そこで実大の壁式連層耐力壁架構試験体に対して,連 層新設開口を施工するとともに既往の研究^{1,2)}と同様の 方法で開口周辺の補強を行った架構の構造実験を実施し た。本論では既往の研究^{1,2)}において明らかにされている 補強を行った部材の剛性・耐力算定方法を用いて,本試 験体に対し増分解析を行い,新設開口設置に伴い補強を 行った壁式連層耐力壁のモデル化手法を提案する。

2. 試験体概要

コンクリート材料試験結果を表-1 に,鉄筋材料試験 結果を表-2に,試験体概要を表-3に示す。試験体配筋 図を図-1に,耐力壁配筋図を図-2に,壁梁配筋図を図 -3に示す。本試験体は2FL-600mmから4FL+1000mmま でを模した実大の壁式連層耐力壁架構試験体に対し,連 層新設開口を設置し,かつ開口周辺の補強を行ったもの である。各開口周辺部材の具体的な補強方法として,新 設開口左右の耐力壁は新設開口を設置する際に,新たに 開口端部となる部分をはつり,曲げ補強筋として接着系 あと施工アンカー等を用いて補強を行った。また新設開 口上部の壁梁は既存の壁梁の両側面に新たに RC 梁を施

表-1 コンクリートの材料試験結果

部位			ヤング係数	圧縮強度	引張強度
			(N/mm^2)	(N/mm ²)	(N/mm^2)
下スタブ		Fc18	27402	35.8	3.07
0F壁,1F床	既存部	Fc18	25018	32.8	2.59
1F壁,2F床	既存部	Fc18	23713	30.2	2.80
2F壁,3F床	既存部	Fc18	25090	31.0	2.87
3F壁,上スタブ	既存部	Fc18	23614	29.8	2.52
壁梁	補強部	Fc30	30881	59.2	4.30
耐力壁	補強部	Fc45	30907	73.3	5.61

表-2 鉄筋の材料試験結果

使用部位	呼び径	材質	ヤング係数 [N/mm ²]	降伏強度	降伏歪 [u]	引張強度
					[۳]	
	φ9	SDR235	2.12×10 ⁵	347.6	1665	466.1
既存部	D10	SD295A	2.02×10 ⁵	397.1	2613	610.7
	D13	SD295A	1.88×10 ⁵	357.6	1895	473.5
補強部	D10	SD295A	1.94×10 ⁵	366.1	1910	497.2
	D16	SD345	1.91×10 ⁵	401.7	2140	571.6

表-3 試験体概要

試験体情報				
	既存縱筋		φ9@200	
	既存横筋		φ9@200	
	既存交差部補強筋		2-D13	
耐力壁	新設開口	短辺耐力壁	2-D16	
	補強筋	長辺耐力壁	3-D16	
	あと施工	短辺耐力壁	2-D16	
	アンカー	長辺耐力壁	3-D16	
	既存	字主筋	φ9@200	
	既存せん	し断補強筋	φ9@200	
壁梁	新記	殳主筋	4-D16	
	新設せん断補強筋		D10@200	
	通し筋		D16(端部ねじ切り	
*	主筋		D10@200	
~ , , ,	配	力筋	D10@200	

工して補強を行った。なお開口端部に施工するあと施工 アンカーについては既往の文献³⁾と同様の方法でアンカ 一降伏により決まる引張耐力,既存コンクリートのコー

*1 国立研究開発法人建築研究所 主任研究員 博士 (工学) (正会員)

*2 東京理科大学 理工学部建築学科 (非会員)

ン破壊により決まる引張耐力,アンカーの付着力により 決まる引張耐力の算定を行い,埋め込み長さは引張耐力 がアンカーの降伏で決まるように設計した。

3. 加力計測計画

加力装置を図-4 に示す。加力方式は片持ち梁形式で の正負交番繰返し載荷とし、加力位置は 7000mm の高さ とした。また長辺耐力壁にジャッキにより加わる水平力 を短辺耐力壁に伝えるため開口部には両端ピンの治具を 設置した。正載荷はジャッキを引く方向とした。加力位 置の水平変位と 2F スラブ位置の水平変位の差を出し, これを 2F スラブ位置から加力位置までの高さである 5825mm で除した値を全体変形角とし、これにより水平 加力の制御を行った。載荷履歴は全体変形角が±1/1600 に到達する前は荷重制御とし、荷重 P=±400kN を1サイ クルずつ行う。変形角が±1/1600に到達した直後から変 位制御に切替え,全体変形角 R=±1/1600 ±1/800 ± 1/400 ±1/200 ±1/133 ±1/67 ±1/50 を最大 2 サイクル ずつ行う。なお長期軸力は 2Fの耐力壁の軸力比が 0.035 となるよう図-4の通り、左右の耐力壁に2本のPC鋼 棒により軸力を作用させる。

4. 架構試験体に対する増分解析による検討

4.1 耐力壁長期軸力の算定

耐力壁に加わる長期軸力はその耐力壁に接続する壁梁, 床,直交壁,耐力壁自重等を考慮して算出する。これに 加え,前述した2F耐力壁に軸力比0.035で軸力が加わる よう PC 鋼棒により軸力を作用させることを考慮した解 析を行う。PC 鋼棒の緊張力により加える軸力は軸力比 0.035 の場合,短辺耐力壁が523.2kN,長辺耐力壁が 794.2kN である。耐力壁に加わる長期軸力の算出結果を 表-4に示す。

4.2 解析概要

4.2.1 架構のモデル化

架構のモデル図を図-5 に示す。線材置換し,モデル 化された部材は各部材芯に配置する。耐力壁の部材芯は 重心とする場合及び壁せいの中心とする場合の2通りで 解析を行う。耐力壁の構造芯を壁せいの中心とする場合, 図-5(b)のように壁の重心位置にもダミーの節点を設け て各壁部材の長期軸力による節点質量はこの節点に設定 する。梁と壁の剛域端はフェイス位置とし危険断面位置

表-4 耐力壁軸力の算定結果

	$1\mathrm{F}$	2F(軸力比 0.035)	3F	4F
短辺耐力壁 (断面積:575000mm ²)	639.7kN	611.8kN	570.6kN	535.2kN
長辺耐力壁 (断面積:882500mm ²)	987.6kN	938.98kN	889.4kN	830.8kN

(b) 耐力壁の構造芯を壁せいの中心とした場合図-5 架構のモデル

は剛域端とする。なお、耐力壁の構造芯を重心とした場 合、中心とする場合より耐力壁の長さを剛域とする梁要 素の剛域長が長くなる。加力位置のピン治具は両端ピン 接合の剛梁としてモデル化する。また節点の拘束条件は 節点 0'のみ水平方向、鉛直方向、回転方向を固定として おり、その他節点については全て自由としている。

4.2.2 部材のモデル化

各部材のモデル化を行った際のばねモデル図を図-6 に示す。壁梁部材を1本の水平方向の線材としてモデル 化する場合は梁の左右両端の危険断面位置に曲げばね, 材中央にせん断ばねを有するモデル化を行う。

耐力壁は1本柱置換によりモデル化する。この時,耐 力壁の長さを剛域とする梁要素を有し,耐力壁の中心部 分上下端に曲げばね,中央部に軸ばね,およびせん断ば ねを配したモデルとして扱う。

曲げばねおよびせん断ばねはひび割れと終局を考慮し たトリリニアモデルとし、軸ばねは圧縮側を弾性、引張 側は降伏を考慮したバイリニアモデルとしている。また 最下階の耐力壁の壁頭は 2F の新設開口部内の切断した 縦筋の定着長が足りないため、それを除いた断面でモデ ル化を行う。一方、最下階壁脚に関しては新設開口部内 の縦筋は下スタブに全て定着させたモデル化を行う。

4.2.3 各部材の剛性・耐力算定方法

各部材の剛性・耐力の算定に用いる評価式は既往の研 究^{1,2)}と同様のものを用いることとする。

(1) 耐力壁部材

部材の骨格曲線の算定において剛性は式(1),(2)を,曲 げ剛性低下率は文献¹⁾に示される式(3)を,せん断剛性低 下率は文献³⁾に示される式(4)を用いて算定した。ひび割 れ強度は壁式規準⁴⁾に示される式(5),(6)を用いて算定し た。曲げ終局強度は同規準⁴⁾に示される式を用いた場合, 安全側に評価する傾向にあることから,靭性指針のに示 される式(7)を用いて算定した。せん断終局強度において も同規準⁴⁾に示される式を用いた場合,安全側に評価す る傾向があるため技術基準解説書⁵⁾に示される式(8)を用 いて算定した。

$$K_f = \frac{6E_c \cdot l_e}{L} \tag{1}$$

$$K_s = \frac{GA}{\kappa L} \tag{2}$$

 K_f :曲げ初期剛性, K_s :せん断初期剛性,L:部材長さ, E_c :既存部コンクリートヤング係数, I_e :等価断面二次モ ーメントで文献³⁾に示される耐力壁の曲げ剛性に寄与す る直交壁の協力幅を考慮,G:せん断弾性係数,A:部材 断面積, κ :せん断形状係数

$$\alpha_y = \frac{{}_w M_y C_n}{E_c I_w \varepsilon_y} \tag{3}$$

 $_wM_y$: 引張縁が開口補強端部の場合,補強端部から3列 目鉄筋の降伏時曲げモーメントとし,引張縁が直交壁側 端部の場合,直交壁側端部から2列目縦筋降伏時曲げモ ーメント(文献¹⁾で精度よく荷重変形関係を評価できる ことを確認), C_n : 引張縁が開口補強端部の場合,開口補 強端部より3列目鉄筋降伏時の弾性中立軸から当該鉄筋 までの距離とし,引張縁が直交壁側端部の場合,直交壁 側端部より2列目縦筋降伏時の弾性中立軸から当該縦筋 までの距離, E_c : 既存部コンクリートのヤング係数, I_w : 断面二次モーメントで文献³における直交壁協力幅を考 慮, ε_v : 補強端部または直交壁側端部主筋の降伏ひずみ

$$\beta = \frac{0.46p_w \sigma_y}{E} + 0.14 \tag{4}$$

 $p_w: 壁縦筋比, \sigma_y: 壁縦筋の降伏強度, F_c: 既存部コン$ クリートの圧縮強度

$$M_c = (0.56\sqrt{\sigma_B} + \sigma_o)Z_e \tag{5}$$

 $\sigma_0: 軸方向応力度, \sigma_B: 既存部コンクリートの圧縮強度, <math>Z_e: 鉄筋を考慮した壁板の等価断面係数で文献³⁾に示される直交壁の協力幅を考慮$

$$Q_{cr} = \frac{s\tau_{cr}t_w l_w}{r} \tag{6}$$

 $s\tau_{cr}$: せん断ひび割れ発生時せん断応力度, σ_t : 既存部コ ンクリート引張強度, κ_s : せん断形状係数

$$M_u = A_{st}\sigma_{st}d - A_{sc}\sigma_{sc}d_c - \frac{\sigma_{av}b\beta_1x_n}{2} + Ng$$
(7)

 A_{st} :中立軸より引張側にある鉄筋の各断面積で文献³)に 示される曲げ強度に有効な直交壁内の鉄筋を考慮する, σ_{st} :同上鉄筋の降伏強度, d: 圧縮縁から同上鉄筋まで の距離, A_{sc} :中立軸より圧縮側にある鉄筋の各断面積で 文献³)に示される曲げ強度に有効な直交壁内の鉄筋を考 慮する, σ_{sc} :同上鉄筋の降伏強度, d_c : 圧縮縁から同上 鉄筋までの距離, g:圧縮縁から重心軸までの距離, β_1 :係 数で 0.85 とする, x_n : 圧縮縁から中立軸までの距離, σ_{av} : コンクリート平均応力度で $\sigma_{av} = \beta_1 \sigma_B$, σ_B : 既存部コン クリート圧縮強度, N:軸力

$$Q_{su} = \left\{ \frac{0.068 p_{te}^{0.23} (F_c + 18)}{\sqrt{M/(QD) + 0.12}} + 0.85 \sqrt{p_{wh} \sigma_{wh}} + 0.1 \sigma_0 \right\} t_e j$$
(8)

 p_{te} :等価断面の引張鉄筋比で文献³⁾に示されるせん断強 度に有効な直交壁内の鉄筋を考慮, F_c :既存部コンクリ ート強度, σ_{wh} : 横補強筋の降伏強度, p_{wh} :横補強筋比, σ_0 :軸方向応力度, t_e :等価壁厚,j:応力中心間距離, M/(QD):シアスパン比で1未満の場合は1とし,3を超 える場合は3とする。なお本試験体においては2,3Fの短 辺耐力壁(1.3)を除き全て1.0で計算している。

(2) 壁梁部材

部材の骨格曲線の算定において剛性、剛性低下率はそ

れぞれ式(9),(10),(11),(12)を,ひび割れ強度はそれ ぞれ壁式規準⁴⁾に示される式(13),(14)を用いて算定し た。曲げ終局強度は同規準⁴⁾に示される式を用いた場 合,安全側に評価する傾向にあるため,靭性指針⁶⁾に示 される式(15)を用いて算定した。せん断終局強度におい ても同規準⁴⁾に示される式を用いた場合,安全側に評価 する傾向にあるため技術基準解説書⁵⁾に示される式(16) を用いて算定した。

$$K_f = \frac{6E_c \cdot I_e}{L} \tag{9}$$

$$K_s = \frac{GA}{\kappa L} \tag{10}$$

 K_f :曲げ初期剛性, K_s :せん断初期剛性,L:部材長, E_c :既存部コンクリートヤング係数, I_e :等価断面二次 モーメントで文献³⁾に示される壁梁の曲げ剛性に寄与す るスラブの協力幅を考慮,G:せん断弾性係数,A:部 材断面積, κ :せん断形状係数

$$\alpha_y = (0.043 + 1.64n \cdot p_t + 0.043 \cdot \frac{M}{Qd}) \cdot (\frac{d}{D})^2 \qquad (11)$$

n:既存部コンクリートおよび鉄筋のヤング係数比, p_t : 引張鉄筋比で引張側にスラブ筋がある場合,それを含み, 引張縁から鉄筋重心位置までを引張鉄筋とした鉄筋比, M/Qd: せん断スパン比, D: 梁せい, d: 梁の有効せい

$$\beta = \frac{Q_{su}/\gamma_u}{Q_c/\gamma_c} \tag{12}$$

 Q_{su} : せん断終局強度, Q_c : せん断ひび割れ強度, γ_u : せん断終局時のせん断変形角で $\gamma_u = 10\gamma_c, \gamma_c$: せん断 ひび割れ時のせん断変形角

$$M_c = (0.56\sqrt{\sigma_B})Z_e \tag{13}$$

Z_e:等価断面係数で文献³⁾に示されるスラブの協力幅を 考慮, σ_B:既存部コンクリートの圧縮強度

$${}_{s}Q_{cr} = \tau_{scr} \cdot b \cdot D/\kappa \tag{14}$$

 τ_{scr} :既存部コンクリートせん断ひび割れ強度,b:梁 幅,D:梁せい, κ :せん断形状係数

$$M_u = A_{st}\sigma_{st}d - A_{sc}\sigma_{sc}d_c - \frac{\sigma_{av}b(\beta_1 x_n)^2}{2}$$
(15)

 A_{st} :中立軸より引張側にある鉄筋の各断面積で文献³に 示される曲げ強度に有効なスラブ内の鉄筋を考慮, σ_{st} : 同鉄筋の降伏強度,d: 圧縮縁から同上鉄筋までの距離, A_{sc} :中立軸より圧縮側にある鉄筋の各断面積で文献³に 示される曲げ強度に有効なスラブ内の鉄筋を考慮, σ_{sc} : 同鉄筋の降伏強度, d_c : 圧縮縁から同上鉄筋までの距離, β_1 : 係数で0.85, x_n : 圧縮縁から中立軸までの距離, σ_{av} : コンクリート平均応力度 $\beta_1\sigma_B$, σ_B : コンクリート圧縮強 度で既存部と補強部のそれぞれのコンクリート強度 式(14)を用いて曲げ終局強度の算定を行う場合,既存壁 梁と補強部壁梁の曲げ終局強度をそれぞれたしあわせる

ことで算定を行う。これにより文献 ¹で精度よく荷重変 形関係を評価できることを確認している。

$$Q_u = \{\frac{0.068p_{\ell_e}^{0.23}(F_c+18)}{M/Qd+0.12} + 0.85\sqrt{p_{we}\sigma_{wy}}\}b_e j$$
(16)

 p_{te} : 引張鉄筋比で引張側にスラブ筋がある場合,文献³⁾ におけるせん断強度に有効な直交壁鉄筋を考慮し,引張 縁から鉄筋重心位置までを引張鉄筋とする, b_e :等価幅 (1.2b を上限),d: 有効せい, F_c : 既存部コンクリート 強度,M/Qd: せん断スパン比で $1 \leq M/Qd \leq 3$, p_{we} : 等価 せん断補強筋比で既存,新設せん断補強筋を考慮(1.0% 以下), σ_{wv} : 同鉄筋の降伏強度,j: 応力中心間距離

4.2.4 増分解析結果と実験結果の比較

実験結果について、負載荷方向では、ねじれ変形の発 生が確認されており、R=-1/100rad.で載荷を終了している。 ねじれ変形が耐力等に与えた影響は現時点で明らかでは ないことから、本論における考察では、正載荷時は最終 的な載荷まで、負載荷時は-1/100rad.時点までを評価対象 とする。1F層せん断力-全体変形角関係の解析値と実験 値の比較を図-7 に、各層水平変位分布の解析値と実験 値の比較を図-8に示す。実験結果による機構図を図-9 に、解析結果による機構図を図-10 に示す。なお図-7 における 1F層せん断力は図-5の節点 0-0'間の層に作用 するせん断力である。実験結果による機構図は耐力壁の 交差部補強筋、あと施工アンカーもしくは梁の新設主筋 が降伏している場合,曲げ降伏とし赤丸で機構図に示す。 なお変動軸力を考慮した場合の機構図も図-10 と同様 である。また図-8の各層水平変位は1Fの変位を0とし た時の水平変位としており,実験の最終サイクルの変形 角と比較するため正側は全体変形角が 1/50 の時, 負側は

全体変形角が-1/100の時の値となっている。

図-7の1F層せん断力-全体変形角関係から耐力壁の 構造芯を壁せいの中心とする場合より重心とした場合の ほうが剛性・耐力ともに大きい結果となった。これは耐 力壁の構造芯を壁せいの中心とする場合,重心とした場 合より梁の剛域長さが短く,節点モーメントに対して梁 の危険断面位置に作用するモーメントが大きくなるため である。実験値と比較したところ壁部材の重心を構造芯 とした場合,正載荷時において変形角1/1000rad程度ま では剛性・耐力ともに精度良く評価できているが,それ 以降の変形角における耐力に関して,解析値が実験値を やや下回る結果となった。

そこで解析結果から正側は全体変形角1/50 rad.まで, 負側は全体変形角-1/100 rad.まで載荷した際の変動軸力 を算出し,これを用いて耐力壁の曲げ及びせん断強度を 算定した値を耐力壁のモデル化に反映した。なおその収 斂計算の回数は一回である。変動軸力算出結果は表-5 に示す。結果として長辺耐力壁に圧縮の変動軸力が加わ る正載荷時は耐力が上昇し,長辺耐力壁に引張の変動軸 力が加わる負載荷時は耐力が減少し,これを実験値と比 較すると,正載荷時において変動軸力を考慮しない場合 と比較すると剛性・耐力ともにより精度良く評価できる 結果となった。よって壁構造芯を重心とし、変動軸力を 考慮する場合が実験値と比較した際,最も精度良く評価 できる結果が得られた。

各層水平変位は耐力壁の構造芯の違い,変動軸力の考 慮の有無で大きな差はなく,いずれも実験値に近い値が 得られた。部材の損傷状態を表す機構図は,耐力壁の構 造芯の違い,変動軸力の考慮の有無にかかわらず同じ結

図-9 実験結果による最終破壊状況(左:正,右:負)

図-10 機構図

耐力壁	17EE	ᆎᆂᄨ	変動軸力Ne(kN)		
構造芯	陌	耐刀壁 正載荷		負載荷	
	2F	短辺壁	-568.1	567.1	
		長辺壁	568.1	-567.1	
重心	3F	短辺壁	-302.4	267.7	
		長辺壁	302.4	-267.7	
	4F	短辺壁	0.0	0.0	
		長辺壁	0.0	0.0	
	26	短辺壁	-498.2	530.1	
	ZΓ	長辺壁	498.2	-530.0	
中心	3F	短辺壁	-262.6	253.6	
		長辺壁	262.6	-253.6	
	4F	短辺壁	0.0	0.0	
		長辺壁	0.0	0.0	

表-5 変動軸力(圧縮を正)

果となった。また正負ともに実験結果の破壊状況とおお むね近い破壊状況であった。

5. まとめ

本論では連層新設開口を設置に伴い補強を行った壁式

連層耐力壁試験体に対し静的増分解析を行い,以下の知 見が得られた。

・増分解析において耐力壁構造芯を壁せいの中心とする 場合より重心とした場合のほうが、剛性・耐力ともに大 きく、実験値に近い値となった。これは耐力壁の構造芯 を壁せいの中心とする場合、重心とした場合より梁の剛 域長さが短くなり、節点モーメントに対して梁の危険断 面位置に作用するモーメントが大きくなるためである。

・増分解析において変動軸力を考慮することで長辺耐力 壁に圧縮の変動軸力が加わる正載荷時は耐力が上昇し, 長辺耐力壁に引張の変動軸力が加わる負載荷時は耐力が 減少し,正載荷時について実験値に近い値となった。

・連層新設開口を設置に伴い補強を行った壁式連層耐力 壁試験体に対し,既往の研究^{1,2)}において示されている補 強工法に対して精度が確認されている部材の剛性・耐力 算定方法を用いて,増分解析を行った結果,1F せん断力 ー全体変形角曲線に関して,壁構造芯を重心とし,変動 軸力を考慮することで実験値と比較した際,精度よく安 全側に評価できることが確認された。

・実験結果では変形角+1/133rad付近から緩やかな耐力低 下が確認されているが、このような部材の耐力低下を解 析モデルに考慮することが今後の検討となる。

謝辞

本研究は,国立研究開発法人建築研究所の研究課題「既 存中低層鉄筋コンクリート造建築物の空間拡大技術の開 発」の一環として,実験は建築研究所実大構造物実験棟 において実施された。関係各位に謝意を表します。

参考文献

- 毎田悠承ほか, 躯体改造後の既存壁式鉄筋コンクリ ート造建物の構造性能評価 その 3~その 6, 日本建 築学会大会学術講演梗概集, pp.159-166, 2019
- 高橋良輔ほか:新設開口設置に伴い補強を行った RC 造壁梁の構造特性評価,コンクリート工学年次論文 集, Vol.42, No2, pp.205-210, 2020
- 3) 国立研究開発法人建築研究所:接着系あと施工アン カーを用いた構造部材の構造性能評価方法に関する 検討,建築研究資料 No.200, 2020.7
- 4) 日本建築学会:壁式鉄筋コンクリート造設計・計算
 規準・同解説,2015
- 5) 国土政策技術総合研究所,国立研究開発法人建築研究所監修:2015 年版構造物の構造関係技術基準解説
 書,2015
- 6) 日本建築学会:鉄筋コンクリート造建物の靭性保証
 型耐震設計指針(案)・同解説,1997