論文 アンボンドプレストレストコンクリート構造部材の曲げ終局強度に 関する研究

長井 俊晃*1·津田 和明*2

要旨:アンボンドプレストレストコンクリート構造部材の曲げ終局強度算定法は、いくつか提案されている が、それらの適用範囲、算定精度は明確であるとは言い難い。そこで、既往実験結果とFEM 解析結果を用 いて、既往の曲げ終局強度算定法の精度検証、曲げ終局強度時の内部応力度状態を検討することにした。本 報では、その検討結果を報告する。

キーワード:アンボンド,プレストレストコンクリート,曲げ終局強度,FEM解析

1. はじめに

プレストレストコンクリート構造は、他のコンクリー ト構造と比較して、ひび割れが生じにくい特徴を持って いる。その中でも、アンボンドタイプに関しては、ひび 割れ本数は少ないが、PC 鋼材とコンクリートの間に付着 を持たず、両者が異なる挙動をするため、アンボンドプ レストレストコンクリート構造の曲げ終局強度に関して は、未だに不明な点が多いのが現状である。

現在、アンボンドプレストレストコンクリート構造の 曲げ終局強度算定法として,日本建築学会の「プレスト レストコンクリート造建築物の性能評価型設計施工指針 (案)・同解説」¹の曲げ終局強度式(以下, PC 性能評価 指針式と称す),日本建築学会の「プレストレスト鉄筋コ ンクリート(Ⅲ種 PC)構造設計・施工指針・同解説」²⁾ の曲げ終局強度式(以下, PRC 指針式と称す), 宋ら 3が 提案した、PCaPC 十字形架構のマクロモデルに基づいた 簡易的な曲げ終局強度算定式(以下, 宋らの提案手法と 称す)や筆者ら 4が提案した幅方向におけるせん断補強 筋の拘束効果によるコア内のコンクリート圧縮強度増分 と PC 鋼材の引張応力度増分を考慮した算定式(以下, 筆者らの提案手法と称す)がある。そこで、本報では、 既往実験結果と FEM 解析結果を用いて、既往の曲げ終 局強度算定法の精度検証と曲げ終局強度時の内部応力度 状態を検討することにした。

2. 既往曲げ終局強度算定法

2.1 PC 性能評価指針式

日本建築学会のPC性能評価指針式は式(1)~(4)で表される。PC 鋼材の曲げ終局時の引張応力度は式(5)で求めた。

$$M_{u1} = T_{pc} \cdot d_{pa} + T_{py} \cdot d_{pb} + T_{sy} \cdot d_{t} - C_{sy} \cdot d_{c} - (T_{pc} + T_{py} + T_{sy} - C_{sy}) \cdot k_{2} \cdot x_{n}$$
(1)

$$x_n = \frac{q_{pr}}{k_1 k_3} D \frac{b}{B}$$
(2)

$$q_{pr} = \frac{T_{pc} + T_{py} + T_{sy} - C_{sy}}{bD\sigma_{R}}$$
(3)

$$k_1 = 0.85$$
 $k_2 = 0.42$ $k_3 = 1.00$ (4)

$$\sigma = \min\left({}_{p}\sigma_{y}, 0.75_{p}\sigma_{0} + 0.25_{p}\sigma_{y}\right)$$
(5)

上式中, T_{pc} , T_{py} は圧縮側, 引張側の PC 鋼材の引張力, d_{pa} , d_{pb} はコンクリート圧縮縁から圧縮側, 引張側 PC 鋼 材の重心位置までの距離, C_{sy} は圧縮側鉄筋の降伏時圧縮 力, T_{sy} は引張側鉄筋の降伏時引張力, d_c , d_t はコンクリ ート圧縮縁から圧縮鉄筋, 引張鉄筋の重心位置までの距 離, x_n はコンクリート圧縮縁から中立軸位置までの距離, D は梁せい, b は梁幅, B はスラブの協力幅を考慮した 梁幅, σ_B はコンクリート圧縮強度, k_1 , k_2 , k_3 は曲げ圧縮 部コンクリートのストレスブロック係数, $p\sigma_0$ は PC 鋼材 の初期緊張時引張応力度, $p\sigma_y$ は PC 鋼材の降伏強度であ る。これらの単位は SI 単位系で, 力は N, 距離は mm で ある。

2.2 PRC 指針式

日本建築学会の PRC 指針式は式(6)で表される。PC 鋼 材の曲げ終局強度時の引張応力度増分は式(7),(8)に示す, 竹本の提案手法⁵⁾(以下,竹本式と称す)で求めた。

$$M_{u2} = \frac{7}{8} \cdot A_s \cdot f_{sy} \cdot d_s + A_p \cdot \sigma_{pu} \left(d_p - \frac{1}{8} d_s \right)$$
(6)

対地震荷重

$$\Delta \sigma_p = 98 - \frac{4.9 \times 10^5}{\sigma_B} P_p \ge 0 \tag{7}$$

*2 近畿大学 産業理工学部 建築・デザイン学科 教授 博士(工学) (正会員)

^{*1} 近畿大学大学院 産業理工学研究科 (学生会員)

対長期荷重

$$l_p/d_p \leq 20:$$

 $\Delta \sigma_p = 196 - \frac{4.9 \times 10^5}{\sigma_B} P_p$
 $20 < l_p/d_p < 60:$
 $\Delta \sigma_p = \left(196 - \frac{4.9 \times 10^5}{\sigma_B} P_p\right) \times \frac{60 - l_p/d_p}{40}$
(8)
 $l_p/d_p \geq 60:$
 $\Delta \sigma_p = 0$
 $P_p = \frac{\sum \alpha_{pl}}{b \times d_p}$
(9)

式(6)~(9)中, A_s , f_{sy} , d_s は引張側普通鉄筋の断面積, 降伏強度,有効せい, A_p , d_p は PC 鋼材の断面積,有効せ い, σ_{pu} は曲げ終局強度時の PC 鋼材引張応力度, P_p は鋼 材比, $\sum a_{pt}$ は引張側 PC 鋼材断面積の和, b は部材幅であ る。

2.3. 宋らの提案手法

PCaPC 十字形架構のマクロモデルに基づく宋らの提 案手法は,式(10),(11)で表される。

$$M_{u3} = \left(D - \frac{2x_n}{3}\right) A_p E_{pc} \varepsilon_{pc}$$
(10)

$$x_{n} = \alpha_{1}\varepsilon_{pc} \qquad \left(\varepsilon_{pc} < \varepsilon_{1}\right)$$

$$x_{n} = \alpha_{2}\varepsilon_{pc} + \alpha_{3} \quad \left(\varepsilon_{1} \le \varepsilon_{pc} < \varepsilon_{py}\right)$$

$$\Xi \equiv \overline{C}, \quad \alpha_{1} = \frac{4A_{p}E_{pc1}}{b\sigma_{B}}, \quad \alpha_{2} = \frac{4A_{p}E_{pc2}}{b\sigma_{B}}, \quad (11)$$

$$\alpha_{3} = \frac{4A_{p}\left(\sigma_{1} - E_{pc2}\varepsilon_{1}\right)}{b\sigma_{B}}$$

上式中, D は梁せい, x_n は梁圧着面での中立軸深さ, A_p , E_{pc} , ε_{pc} , ε_1 , ε_{py} は PC 鋼材の断面積,接線剛性,引 張ひずみ,弾性限界ひずみ,降伏ひずみ,b は梁幅, σ_B は コンクリート圧縮強度, E_{pc1} , E_{pc2} は PC 鋼材の1次,2 次接線剛性, σ_1 は PC 鋼材の弾性限界応力度である。式 (1)~(11)中の詳細については,既報¹⁾⁻³⁾を参照願いたい。

2.4.筆者らの提案手法

筆者らの提案手法の算定対象断面は、図-1に示すス ラブ付きのT形梁である。これは、引張側の主筋、スラ ブ筋は降伏していると仮定している。そして、かぶりコ ンクリート圧縮強度時もしくはコア内コンクリート圧縮 強度時の大きい方を筆者らの提案手法の曲げ終局強度と している(式(12)参照)。ここで示す式は、負曲げの場合 であり、正曲げの場合と詳細については既報 4を参照願 いたい。また、スラブがない場合は、B=bとして適用す る。

$$M_{u4} = \max({}_{m}M_{u1}, {}_{m}M_{u2}) \tag{12}$$

式(12)中, mMu1 はかぶりコンクリート圧縮強度時の曲 げ終局強度でその範囲を PC 鋼材の緊張変動はないと仮 定し,式(13)で算定する。mMu2 はコア内コンクリート圧 縮強度時で,この時点ではかぶりコンクリートは圧壊し ているものと仮定し,せん断補強筋の引張力に対応する ようにコア内コンクリートの圧縮強度増大分を定めるこ とにより,コア内コンクリートの圧縮応力度の大きさと 範囲を式(14)で算定する。

$${}_{m}M_{u1} = a_{t\,t}\sigma_{y}\left(D - d_{t} - \frac{x_{n1}}{2}\right) + a_{s\,s}\sigma_{y}\left(D - d_{s} - \frac{x_{n1}}{2}\right) + a_{p\,p}\sigma_{0}\left(\sum_{i=1}^{n_{p}}d_{pi} - n_{p}\frac{x_{n1}}{2}\right)$$
(13)
$${}_{m}M_{u2} = {}_{m1}M_{u2} + {}_{m2}M_{u2}$$
(14)

上式中, x_{n1} はコンクリート圧縮縁から中立軸位置ま での距離, a_t , a_s , a_p はスラブ筋, 引張側主筋, 一段の PC 鋼材の断面積, $p\sigma_0$, n_p は PC 鋼材の初期引張応力度 と段数, b, D は梁幅とせい, σ_B はコンクリートの圧縮 強度, d_t , d_s , d_{pi} はスラブ筋, 引張側主筋, PC 鋼材位 置の断面縁からの距離である。ここで, x_{n1} は式(15)で, m1Mu2, m2Mu2は式(16), (17)で算定する。

$$x_{n1} = \frac{a_{t\,t}\sigma_y + a_{s\,s}\sigma_y + n_{p\,p}\sigma_y}{b\sigma_B} \tag{15}$$

$$M_{u2} = a_{t\,t}\sigma_{y} \left(D - d_{t} - \frac{x_{n2} + d}{2} \right) + a_{s\,s}\sigma_{y} \left(D - d_{s} - \frac{x_{n2} + d}{2} \right) + a_{s\,s}\sigma_{y} \left(D - d_{s} - \frac{x_{n2} + d}{2} \right)$$
(16)

$${}_{n2}M_{u2} = a_p \Delta_p \sigma_2 \left(\sum_{i=1}^{n_p} d_{pi} - n_p \frac{x_{n2} + 2d}{3} \right)$$
(17)

式(17)中, Δ_pσ₂は PC 鋼材の引張応力度増分であり, 式(18)で算定する。

m1

$$\Delta_p \sigma_2 = \frac{C_{cf}}{n_p a_p} \le {}_p \sigma_y - {}_p \sigma_0 \tag{18}$$

式(18)中, poyは PC 鋼材の降伏強度であり, Cofはせん 断補強筋位置でのコンリート圧縮力の増大分で,式(19) で算定する。

式(19)中 *b* は梁幅で, Δσ_{cf}はせん断補強筋位置でのコ ンクリート圧縮強度の増大分で,式(20)で算定する。

$$\Delta \sigma_{cf} = \frac{\nu a_w \sigma_{wy}}{s} \left(\Delta \sigma_{cf} \le \sigma_B \right) \tag{20}$$

式(20)中, v はコンクリートのポアソン比(v=0.2), a_w , σ_{wy} , s はせん断補強筋1本の断面積,降伏強度およびピッチである。

3. 既往の曲げ終局強度算定法の精度検証

曲げ終局強度算定法の精度検証は、既往実験結果 ⁶⁾⁻²¹⁾ (試験体数 70 体) と FEM 解析結果を用いて行う。

3.1 既往実験結果を用いた検証

強度比(実験値最大耐力 Qeep/曲げ終局強度の各計算 値 Qfu)の因子別検証をした結果を図-2に示す。検証因 子は、シアスパン比、鋼材比、緊張時軸力比である。緊 張時軸力比は、せん断力載荷前の軸力比であり、coo は初 期緊張時のコンクリート圧縮応力度である。縦軸は強度 比で、横軸は各構成因子である。PC性能評価指針式は、 ばらつきも少なく精度良く評価できた。PRC 指針式は、 シアスパン比、鋼材比の増加に伴い、強度比が小さくな った。朱らの提案手法は、若干ばらつきがあるが、精度 良く評価できている。筆者らの提案手法は、回帰直線の 傾きはほぼなく、どの因子でも良好に対応している。

3.2 FEM 解析結果を用いた検証

(1) シミュレーション解析

FEM 解析には「FINAL」を用いた。先ず、菅田らの実 結験結果^の(100-S-69 試験体),宮本らの実験結果^{¬)}(PCa12 試験体)のシミュレーション解析を行い、解析仮定の妥 当性を確認後、パラメトリック解析を行うことにした。 各試験体の諸元を**表-1**,菅田らの試験体の解析モデルを 図-3に示す。コンクリート,モルタル部(赤色の要素) は四辺形要素とし,スタブ部(青色の要素)は弾性とした。PC 鋼材は線材要素とし,せん断補強筋は埋め込み鉄筋でモデル化した。試験体両端部において,PC 鋼材とコ ンクリートの節点を共有し,両材料間の付着はないもの とした。また,目地を貫通する鉄筋は配置していない。 テンションスティフニング特性は出雲らのモデル²²⁾ (C=0.4),コンクリートの圧縮応力度~ひずみ度曲線は 修正 Ahmad モデル²³⁾,ひび割れ後のせん断伝達特性は 長沼モデル²⁴⁾,圧縮強度到達後のひずみ軟化域は修正 Ahmad モデル,圧縮破壊条件は Kupfer-Gerstle の提案²⁵⁾ 方法,ひび割れ後の圧縮強度低減は長沼モデル²⁴⁾,ひび 割れ後の圧縮強度時のひずみ度は低減なしとした。解析 方法は,PC 鋼材に所定の緊張力を与えた後,変位増分で 鉛直力を載荷した。

シミュレーション解析より得られた荷重〜部材角関係 を実験結果と比較して、図-4に示す。両試験体のFEM 解析結果は実験結果に比べ、剛性は若干高くなったが、 強度比(FEM 最大耐力/実験値最大耐力)はそれぞれ、 1.076、1.093となった。さらに、FEM 解析結果の最大耐 力時における PC 鋼材の引張応力度を検討した結果を図 -5に示す。図は、荷重と PC 鋼材の引張応力度の関係を 示したグラフである。両試験体とも PC 鋼材は降伏して いない。菅田らのシミュレーション解析結果では、かぶ りコンクリート部で圧縮軟化し、PC 鋼材の引張応力度増 加があまり見られなかった。宮本らのシミュレーション 解析結果では、PC 鋼材の引張応力度増加が確認できた。 これはせん断補強筋の拘束効果によって、コア内のコン クリートの圧縮強度が増加したためと考えられる。コン クリートの圧縮強度は 70.1 (N/mm²)であるのに対して、

試験体名	100-S-69	PCa12	
b×D 断面(mm ²)	230×400	500×600	
圧縮強度(N/mm²)	60.0	70.1	
シアスパン比	5.00	5.50	
せん断補強筋比	0.556 : ヒンジ部	0.568	
(%)	0.1855:一般部		
せん断補強筋降伏強度	244	271	
(N/mm ²)	344	3/1	
鋼材比(%)	0.874	0.268	
緊張時軸力比	0.1150	0.220	
PC 鋼材降伏強度(N/mm ²)	1125	1150	

表-1 試験体諸元(既往実験)

図-3 菅田らの試験体の解析モデル

表-2 解析諸元 (パラメトリック解析)

解析	$\sigma_{\scriptscriptstyle B}$	M/OD	P_p	_c σ ₀
ケース	(N/mm^2)	~	(%)	/ 0 _B
1, 28, 55	50, 60, 70	3.33	0.335	0.05
2, 29, 56				0.1
3, 30, 57			0.424	0.05
4, 31, 58				0.1
5, 32, 59				0.15
6, 33, 60			0.524	0.05
7, 34, 61				0.1
8, 35, 62				0.15
9, 36, 63				0.2
10, 37, 64		5.00	0.335	0.05
11, 38, 65				0.1
12, 39, 66			0.424	0.05
13, 40, 67				0.1
14, 41, 68				0.15
15, 42, 69			0.524	0.05
16, 43, 70				0.1
17, 44, 71				0.15
18, 45, 72				0.2
19, 46, 73		6.67	0.335	0.05
20, 47, 74				0.1
21, 48, 75			0.424	0.05
22, 49, 76				0.1
23, 50, 77				0.15
24, 51, 78			0.524	0.05
25, 52, 79				0.1
26, 53, 80				0.15
27, 54, 81				0.2

※解析ケース 1~27 の圧縮強度は 50(N/mm²), 28~54 ケースは 60(N/mm²),

55~81 ケースは 70(N/mm²)である。

最大耐力時におけるせん断補強筋位置での最小主応力度 は 82.1 (N/mm²) であった。このコア内の圧縮応力度に 関しては、今後詳細に検討したいと考えている。ここで は、以上の検討結果より、FEM 解析結果は実験結果を十 分に再現できていると判断し、パラメトリック解析を行 うことにした。

(2) パラメトリック解析

解析モデルを図ー6,解析諸元を表ー2に示す。断面は 400×600 (mm²),せん断補強筋比は0.355%である。パラ メータは圧縮強度(σ_B),シアスパン比(M/QD),鋼材 比(P_p),緊張時軸力比($c\sigma_0/\sigma_B$)とし,計81ケースで 行った。既往実験の試験体と解析モデルの関係を図ー7 に示す。同図の縦軸は緊張時軸力比,横軸は PC 鋼材比 である。この図をみると,既往実験は幅広く行われてお り,FEM 解析では,PC 鋼材比を既往実験試験体の中間 値としていることが分かる。

強度比(*QFEM*/*Q*_{fu})の因子別検証をした結果を図-8 に示す。縦軸は強度比で、横軸は各構成因子である。PC 性能評価指針式は、鋼材比の増加に伴い、強度比が若干 大きくなるが、ばらつきも少なく精度が良かった。PRC 指針式は、全体的に安全側に評価した。朱らの提案手法 は、緊張時軸力比の増加に伴い、強度比が大きくなった。 筆者らの提案手法では、全てコアコンクリート圧壊で曲 げ終局強度は決定しており、どの因子でも回帰直線の傾 きが小さかった。しかし、既往実験結果を用いた場合の 検証結果とは、やや傾向が異なる結果であった。これに 今後詳細に検討したい。

次に,最大耐力時の FEM 解析結果と各計算値の PC 鋼 材引張応力度の検討をした結果を図-9 に示す。縦軸は, 強度比 (FEM 解析結果の PC 鋼材引張応力度 poFEM/各 計算による PC 鋼材引張応力度 pocal) であり,横軸は緊 張時軸力比である。各計算方法は PC 規準式,竹本式, 宋らの提案手法,筆者らの提案手法の四通りで求めた。 全ての算定式において,緊張時軸力比の増加に伴い,PC 鋼材の曲げ終局強度時引張力を大きく算定することが分 かった。これに関しても,今後詳細に検討したい。

4. まとめ

アンボンドプレストレストコンクリート構造部材の 既往の曲げ終局強度算定法の精度検証と曲げ終局強度時 の内部応力度状態を検討した結果,以下の知見を得た。

- せん断補強筋の拘束効果によって、コア内コンク リートの圧縮強度が上昇すると、それに対応して、 PC 鋼材の引張応力度も増加することが分かった。
- 2) 既往曲げ終局強度算定法の精度検証を行った結果,PC性能評価指針式は、ばらつきも少なく精度が良かった。PRC指針式は、全体的に安全側の評価となった。朱らの提案手法は、変動傾向を捉えているが、若干ばらつきがみられた。筆者らの提案手法は、回帰直線の傾きは小さかった。
- 3) FEM 解析結果を用いて,各算定法の PC 鋼材引張 応力度の精度検証を行った結果,緊張時軸力比の

増加に伴い, PC 鋼材の曲げ終局強度時引張力を大 きく算定することが分かった。

今後は、曲げ終局強度時のコア内コンクリート圧縮応 力度,PC鋼材の引張応力度を詳細に検討するとともに、 弾塑性挙動(最大耐力時までの荷重~変位関係)算定法 を検討したい。

参考文献

- 日本建築学会:プレストレストコンクリート造建築 物の性能評価型設計施工指針(案)・同解説,2015
- 日本建築学会:プレストレスト鉄筋コンクリート (Ⅲ種 PC)構造設計・施工指針・同解説,2003
- 3) 宋性勲, 晉沂雄, 北山和宏: アンボンド PCaPC 十字 形架構の梁部材における曲げ終局時の耐力および 変形評価用マクロモデル, 日本建築学会構造系論文 集, 第81巻, 第725号, pp.1121-1131, 2016.7
- 津田和明:アンボンド型プレストレストコンクリー ト造梁の曲げ挙動算定法に関する研究,日本建築学 会構造系論文集,第80巻,第725号,pp.659-668, 2015.4
- 5) 竹本靖:アンボンド PRC 部材の曲げ終局強度時テン ドン応力について,大林組技術研究所報, No.28, pp.49-54, 1984.2
- 6) 菅田昌宏, 中塚佶:アンボンド PC 圧着工法による エネルギー吸収型高復元性部材の荷重-部材角関 係に関する研究,日本建築学会構造系論文集,第584 号, pp.153-159, 2004.10
- 7) 宮本佶ほか:アンボンド PCaPC 梁の損傷評価を目的 とした実験的研究,その1,2,日本建築学会大会学 術講演梗概集,構造IV,pp.733-736,2015.9
- 竹中啓之,他:多回数繰り返しを受ける PC 梁に関 する実験的研究,日本建築学会大会学術講演梗概集, 構造IV, pp919-920, 2012.9
- 9) 六車熙,清水良成,西川公敏,幅伊佐男:横拘束コンクリートによるアンボンド PC 部材の靭性改善に関する研究,日本建築学会近畿支部研究報告集, pp129-132,1983.6
- 鈴木大貴ほか: 柱梁曲げ強度を実験変数としたアン ボンド PCaPC 圧着接合骨組の耐震性能に関する研 究,その1,2,日本建築学会大会学術講演梗概集, 構造IV,pp.711-714,2015.9
- 宮本佶ほか:スラブ付きアンボンドプレストレスト コンクリート梁の曲げ性状に関する実験的研究,その1,2,日本建築学会大会学術講演梗概集,構造 pp.749-752,2014.9
- 12) 最上達雄, 是永健好: 逆対称曲げを受けるアンボン

ド PC 梁の耐力・変形評価,日本建築学会構造系論 文報告集,第 411 号, pp.29-38, 1990.5

- 13) 宋性勲ほか:鋼材長さが異なるアンボンド PCaPC 圧 着接合骨組の耐震性能,日本建築学会大会学術講演 梗概集,構造IV, pp.245-246, 2014.9
- 14) 今村俊介,苗思雨,晉沂雄,北山和宏:鋼材係数を 変数としたアンボンド PCaPC 圧着接合骨組の耐震 性能評価,その1,2,日本建築学会大会学術講演梗 概集,構造IV, pp.763-766,2016.8
- 15) 岡本晴彦,平出亨,太田 義弘: プレキャストコンク リート柱・梁圧着接合面のせん断力伝達,その 1, 日本建築学会大会学術講演梗概集, C-2,構造IV, pp.901-902, 1997.9
- 16) 最上達雄, 是永健好:アンボンド PC 梁の曲げ耐力 に関する研究, その1, 日本建築学会大会学術講演 梗概集, pp.2589-2590, 1983.9
- 17) 是永健好,最上達雄:アンボンド PC 梁の曲げ耐力
 に関する研究,その7,日本建築学会大会学術講演
 梗概集,C,構造II,pp.963-964, 1989.10
- 18) 最上達雄, 是永健好:アンボンド PC 梁の曲げ耐力 に関する研究, その 8, 日本建築学会大会学術講演 梗概集, C, 構造 II, pp.2589-2590, 1983.9
- 19) 岡田克也,岡本晴彦:アンボンド・プレストレスト 鉄筋コンクリート梁の基礎的性状に関する研究,日 本建築学会大会学術講演梗概集,構造IV, pp.2599-2600, 1983.9
- 20) 菅田昌宏,太田義弘,岡本晴彦,東端泰夫:プレキ ャストコンクリート・アンボンド PC 圧着部の曲げ 性状に及ぼす曲げ圧縮部補強の効果,日本建築学会 大会学術講演梗概集, C-2,構造 II, pp.1005-1006, 2000.9
- 中野博一,山形雪雄,榊原英雄:アンボンド PC 鋼より線を用いた PRC 梁の曲げ載荷実験,日本建築学 会大会学術講演梗概集,pp.2183-2184, 1981.9
- 22) 出雲淳一,島弘,岡村浦:面内力を受ける鉄筋コン クリート板要素の解析モデル,コンクリート年次論 文集, Vol.26, No.9, pp.107-120, 1987.9
- 23) 長沼一洋:三軸圧縮下でのコンクリートの応力~ひ ずみ度関係,日本建築学会構造系論文集,第474号, pp163-170, 1985.8
- 24) 長沼一洋:鉄筋コンクリート壁状構造物の非線形解 析手法に関する研究(その1),日本建築学会構造系 論文報告書,第421号,pp39-48,1991.3
- 25) Kupfer,H.B.and Gerstle,K.H.:Behavior of Concrete under Biaxial Stress,Journal of the Engineering Mechanics Division, ASCE, Vol.99, No.EM4,pp.853-866,Aug.,1973