論文 骨材粒度分布が流動性に与える影響を考慮したコンクリート配合設 計に関する一考察

渡部 孝彦*1·武田 均*2

要旨:単位水量の低減によるコンクリートの基本性能の向上を目的として,余剰ペースト膜厚理論を用いて 所定の流動性(スランプ)を確保した上で単位水量を低減する検討を行った。また,従来の骨材分散距離の算 出方法に改良を行った。実験1では骨材量・骨材粒度分布・細骨材の骨材粒形が本手法による骨材分散距離 と流動性の関係に与える影響の整理を行い,骨材分散距離がこれらの性質を包括的に表現していることを示 した。また,実験2では,実際のダムコンクリート配合に対し,本手法により単位水量を低減する検討を実 施した結果,本手法の予測通り単位水量が低減可能であることを確認した。

キーワード:余剰ペースト膜厚理論,骨材分散距離,流動性,ブリーディング,空間率推定

1. はじめに

1.1. コンクリート配合設計の前提

一般的なコンクリートの配合設計において, s/a を決定 する方法は,試験練りを繰返し実施することで,単位水 量が出来るだけ小さくなるような s/a を見つけ出すこと である(以下,現状の配合設計手法と呼ぶ)。これは,単 位水量が最小になるような骨材の粒度分布を間接的に検 討しているとも言える。最適な骨材の粒度分布について は,既に多くの研究が行われており,その原則は,コン クリートのワーカビリティを確保したうえで,骨材量を 最大化する(または,ペースト量を最小化する)もので あるとされる¹。

1.2. 余剰ペースト膜厚理論を利用した研究

コンクリートのワーカビリティには流動性, 圧送性, 材料分離抵抗性などの性能が含まれているが, 中でも流 動性と骨材の粒度分布および量を関連づける試みが多く 行われてきている。その検討のひとつに Kennedy の余剰 ペースト膜厚理論²⁾が挙げられる。これは, コンクリー トを骨材とセメントペーストの2つにモデル化し, 骨材 の周囲を覆うセメントペーストの度の平均厚さによって コンクリートのコンシステンシーが決定されると考える ものである。また, Powers はモルタルに対する2種類の 細骨材分散距離の計算方法を整理しており, 橋爪らはこ れらの計算方法を整理・分析している³⁾。2種類の細骨材 分散距離の計算方法を式(1), 式(2) に示す。(本稿で はそれぞれ計算方法1, 計算方法2と称する。)

計算方法13)

$$\frac{D_{ep}}{2} = \frac{V_{ep}}{A_s}$$

$$V_{ep} = 1 - \frac{V_s}{C_s}$$
(1)

$$A_s = a_s \frac{V_s}{10^2}$$

ここに、 D_{ep} :細骨材分散距離(×10³µm)、 V_{ep} :モルタ ル中の余剰ペースト量の体積割合、 A_s :単位体積モルタ ル中の細骨材の総表面積(mm²/mm³)、 V_s :細骨材の体積 混入率(%)、 C_s :細骨材の実積率(%)、 a_s :細骨材の比 表面積(mm²/mm³)、である。

計算方法 23)

$$D_{ep} = \left(\sqrt[3]{\frac{C_s}{V_s}} - 1\right) D_{sm}$$
⁽²⁾

ここに, D_{sm}: 細骨材の平均粒子径 (mm), である。

わが国では余剰膜厚ペースト理論を利用した様々な 検討が行われてきた。松下・近田・前田はモルタルをセ メントペーストと細骨材の2つにモデル化し,余剰ペー スト膜厚理論を適用している⁴⁾。その結果,計算方法1 で求めた余剰ペースト膜厚を細骨材の平均粒径で除した 値(余剰ペースト膜厚/細骨材粒子径比)と,モルタル の流動性(JIS R 5201のフロー)には,セメントペース トの性質が同一である条件下で一律な相関があることを 報告している。ここで骨材分散距離は余剰ペースト膜厚 を2倍した値に等しく,平均粒径には面積体積平均粒径 を用いている。また,近田⁵は,面積体積平均粒径の計 算にふるい目の呼び寸法による式(3)を採用している。

$$D_{sm} = D_{sa} = \frac{1}{\sum_{n=1} \frac{(\ln D_{n+1} - \ln D_n)}{D_{n+1} - D_n} V_n}$$
(3)

ここに、*D_{sa}*:細骨材の比表面積相当平均粒径(mm), *n*: 呼び寸法が小さい方から数えたふるいの順番, *D_n*: n 番目のふるいの呼び寸法(mm), *V_n*: n 番目のふるいにとどまる細骨材の体積割合, である。

*1 大成建設(株) 技術センター 主任 (正会員) *2 大成建設(株) 技術センター チームリーダー (正会員) 三宅・松下のはコンクリートを骨材とセメントペース トの2つにモデル化し、余剰ペースト膜厚理論を利用し た。さらに、骨材表面に付着することで粒子間の潤滑に 寄与出来ない付着ペースト膜を定義し、W/Cによって付 着ペースト膜厚が変化することで、余剰ペースト膜厚理 論によりコンクリートの流動性を推定する手法に W/C を組み込んだ新たな手法を提案している。

寺西・谷川 1)は細粗骨材の粒度分布の影響がコンクリ ートおよびモルタルの流動性に及ぼす影響について検討 しており,計算方法2による骨材分散距離による整理を 行っている。その結果、骨材粒度分布を一定の条件下で 変化させた際の定性的な骨材粒度の決定方法(骨材量が 最大になるような骨材の粒度分布を設計する方法)を示 した。また、寺西ら⁷は JIS 範囲の細粗骨材の粒度分布 の変動がコンクリートの流動性や粘性、材料分離抵抗性 に与える影響についての検討を行い,計算方法2の骨材 分散距離による整理を行った。その結果,骨材粒度分布・ 細骨材率・単位水量(または骨材量)の変動の影響は, 骨材分散距離により包括的に評価できると考察している。 また、材料分離抵抗性はセメントペーストの性質が同一 であれば、骨材分散距離を指標にある程度制御可能であ ると考察している。さらに、寺西らはコンクリートの流 動性と材料分離抵抗性を考慮した新たな配合(調合)設 計手法を提案している。

一方,筆者ら⁸⁰は,海外において低単位水量で流動性 が高い実績のある配合があることに着目した。そこで, JIS 範囲の骨材粒度分布(JIS A 5005)に拘らず,海外規 格による骨材粒度分布も対象として,粒度分布が大きく 異なる様々な種類の骨材を使用した配合のモルタルまた はコンクリートのコンシステンシー試験を実施し,余剰 ペースト膜厚理論による整理を行った。その結果,JIS の 粒度分布範囲外の骨材を用いた配合であってもスランプ と計算方法2の骨材分散距離には一定の相関が認められ, 骨材の粒度構成の調整により流動性が改善できる可能性 を示した。

1.3. 本研究の位置づけと目的

以上に、国内で行われてきた余剰ペースト膜厚理論を 利用したコンクリートの流動性などの評価に関する検討 を整理した。余剰ペースト膜厚理論を配合設計に利用す るという観点においては、三宅・松下の報告のは、流動 性(スランプ)が最大になる配合設計に活用できる。ま た、寺西らの報告^のは、流動性・材料分離抵抗性を考慮 した新たな配合設計手順を提案するものであった。

しかし一方で,現状の配合設計手法は既に広く認知・ 利用されている。土木学会コンクリート標準示方書には, 標準的な配合の目安として粗骨材かさ容積や細骨材率が 与えられており,各条件により配合を補正する手法が示

されている。これらは、多くの実績に基づく定性的な手 法であり, 配合理論的な分析や解明がなされているもの ではないが、配合設計におけるわかりやすい目安として 広く利用されている現状がある。そこで本研究では、既 存の配合から単位水量を低減することによるコンクリー トの基本性能の向上を目的に, 余剰ペースト膜厚理論を 利用する検討を行った。すなわち、余剰ペースト膜厚理 論をいちからの配合設計に利用するのではなく、現状の 配合決定手法などにより既に定められた配合に対して余 剰ペースト膜厚理論を利用し,所定の流動性(スランプ) を確保した上で単位水量を低減する検討を行った。まず, 実験1として骨材量・骨材粒度分布・細骨材の粒形を要 因とした実験を実施し,骨材分散距離と流動性の関係の 整理を行った。次に、実験2として、実験1で整理した 手法をダムコンクリート配合に適用して単位水量の低減 効果を検証した。

2. 骨材量・粒度分布などを要因とした実験(実験1) 2.1.実験概要

骨材量・骨材粒度分布・細骨材の粒形を要因とした練 り実験を実施した。対象はモルタルおよびコンクリート とし、骨材粒度分布および細骨材の粒形を要因にしたシ リーズ1、骨材粒度分布および骨材量を要因にしたシリ ーズ2を実施した。各要因がモルタルおよびコンクリー トのコンシステンシーに与える影響を骨材分散距離によ って整理した。

(1) 実験要因と水準

表-1に実験要因と水準を示す。細骨材粒度分布はJIS 範囲内外の粒度分布を含む細目から粗目までの5パター ンとした。細骨材粒度分布を図-1に示す。また、細骨 材と粗骨材の合成粒度分布(以下,細粗骨材粒度分布と 呼ぶ)を図-2に示す。粗骨材の種類および粒度分布は 固定とした。また、骨材量を3水準に変化させた。細骨 材の種類は砕砂、山砂、川砂の3種類とした。ここで、 本検討では細骨材種類の違いは主として粒形の違いとし て整理している。当初は細骨材種類による密度および粒 形の違いがモルタルおよびコンクリートの流動性への影 響要因であると推察したが、後述のように各細骨材の表 乾密度にほとんど差がなかったことから、本検討におい ては細骨材の種類がコンシステンシーに与える影響要因 は主として粒形であると考えた。

表-1 実験要因と水準

要因	水準
細骨材粒度分布	細目〜粗目(5 パターン)
骨材量	665, 680, 695 (L/m ³)
細骨材種類(粒形)	細骨材3種類

(1) 使用材料

表-2 に使用材料を示す。粉体には普通ポルトランドセ メント(密度 3.15g/cm³)を使用した。細骨材は前述のと おり 3 種類,粗骨材は1 種類とした。粗骨材の最大寸法 は 20mm とした。各骨材の表乾密度は,S1:2.64g/cm³, S2:2.62g/cm³,S3:2.63g/cm³,G1:2.67g/cm³であった。

(2) 配合および試験項目

配合を表-3,表-4に示す。ここで,表-3に示した ように、粒度分布①,②は、S1,S2,S3を用い各細骨材を それぞれ分級して粒度分布が①,②となるように混合し たものである。細骨材の種類(粒形)がモルタルおよび コンクリートの流動性に与える影響を確認するため、各 種細骨材を同じ粒度分布に調整して流動性を比較した。 また,表-4に示したように、粒度分布③~⑤は、S1,S2 を分級せずに、混合割合をかえて作成した。コンクリー トの目標空気量は4.5%として、練上がりの空気量が4.5 ±1%程度になるようにAE剤で調整した。

試験項目は、モルタル対しては落下無しのフロー(JIS R 5201)、ブリーディング(JIS A 1123)を測定した。コン クリートに対しては、スランプ(JIS A 1101)、ブリーデ ィング(JIS A 1123)を測定した。フローおよびスランプ は2回ずつ実施した。また、空気量をモルタル・コンク リートのそれぞれに対して、質量法(JIS A 1116)、空気 室圧力法(JIS A 1128)により測定した。

(3) 骨材分散距離の算出方法

計算方法 2 (式(2)) を利用して骨材分散距離を算出した。ここで、骨材分散距離の計算における固相と液相の

表-2 使用材料

分類	項目	記号	内容 (FM:粗粒率,G:実積率)
粉体	セメント	С	普通ポルトランドセメント, 比表面積 3240cm²/g
骨材 混和剤		S 1	砂岩砕砂(三重県国見山産), FM3.58, G67.0
	細骨材	S2	山砂(千葉県富津産), FM1.47, G60.6
		S3	川砂(山梨県早川産), FM3.26, G67.7
	粗骨材	G1	2005 砂岩砕石(三重県国見山産), FM6.72, G62.0
	減水剤	Ad	マスターポリヒード 15S
	AE 剤	AE	マスターエア 303A

表-3 配合 (シリーズ1)

Na	W/C	s/c	骨材量	始南八左		単	位量	(kg/m ³)	
INO.	(%)	(体積比)	(L/m ³)	枢度万年	W	С	S1	S2	S3	G
1	50	2.8	-	1	280	560	-	_	1308	-
2	50	2.8	_	1	280	560	1313	_	_	_
3	50	2.8	_	2	280	560	1313	_	_	_
4	50	2.8	—	2	280	560	_	1303	_	_
5	50	2.8	680	1	168	336	_	_	786	1017
6	50	2.8	680	1	168	336	789	_	_	1017
7	50	2.8	680	2	168	336	789	_		1017
8	50	2.8	680	2	168	336	—	784	_	1017

表-4 配合 (シリーズ2)

		-	- •		•		•			
Na	W/C	s/a	骨材量	始奋八左		単	位量	(kg/m ³)	
INO.	(%)	(体積比)	(L/m^3)	枢度万加	W	С	S1	S2	S3	G
9	50	0.446	665	3	177	355	548	233	-	983
10	50	0.446	680	3	168	336	561	239	_	1006
11	50	0.446	695	3	159	318	573	244	_	1028
12	50	0.446	665	(4)	177	355	392	389	_	983
13	50	0.446	680	(4)	168	336	401	398	_	1006
14	50	0.446	695	(4)	159	318	409	406	_	1028
15	50	0.446	665	5	177	355	235	544	-	983
16	50	0.446	680	5	168	336	240	557	_	1006
17	50	0.446	695	5	159	318	246	569	—	1028

表-5 骨材分散距離のモデル化

項目	対象	固相	液相
骨材分散距離	コンクリート	細粗骨材	セメントペースト
細骨材分散距離	モルタル	細骨材	セメントペースト

構成モデルは表-5のような2パターンを考え,骨材分 散距離・細骨材分散距離を,それぞれ式(2)を利用して計 算した。平均粒径の計算には式(3)を用いた。骨材の体積 混入率は空気量を考慮し,式(4)のように算出した。

$$V_a = \frac{V_{a_sp}}{V - \left(V_{air_sp} - V_{air_ex}\right)} \tag{4}$$

ここに、*V_a*:骨材混入率(%),*V_{a_sp}*:単位骨材量(L/m³), *V*:1000L,*V_{air_sp}*:単位配合空気量(L/m³),*V_{air_ex}*:練 上がり時の空気量(L/m³)である。

連行された空気は,液相のセメントペーストに含まれ ると仮定した。ここで,寺西ら¹⁾はペースト中の空気量 を無視して計算しており,これは,既往の研究結果より 空気量を無視した方が骨材分散距離とコンクリートとの 流動性の相関が高いとされているためとしている。しか し,空気量がスランプの大小に影響を与えることは一般 的に知られており,土木学会コンクリート標準示方書の 補正手法でも取り入れられている。そのため,今回は示 方配合における空気量(4.5%)および練上がり時の空気 量を骨材の体積混入率の計算に考慮することにした。

また,細骨材と粗骨材を混合した骨材の実積率は,既 往の研究ではJISA1104に従って測定が行われている^{例え (* 6),7)}。本研究でも当初,JISA1104に従って細粗混合骨 材の測定を試みた。しかし,ジギングにより振動を与え た際に粒径の小さい細骨材が沈み,細骨材と粗骨材が分 離するような現象が生じた。細・粗骨材の粒度分布の範 囲が広いことが原因であると思われるが,セメントペー スト膜厚理論でモデル化されるような骨材が均一に分散 した状態の実積率を実験的に測定することは困難であっ た。

そこで、細粗骨材の実積率は鈴木らの空間率推定手法 を利用して算出した(式(5),(6))⁹。式(6)における単粒度 の実積率ξ_jは、ふるい分け試験で各ふるい目に留まる単 粒度の骨材の実積率をJISA1104に準拠して測定した。 ここで、鈴木らの空間率推定手法は全体体積を考慮する モデルではないため、大きな粒子の間隙よりも小さな粒 子の体積が少ない場合、実積率を過大に評価してしまう 傾向がある。そのため、大きな粒子の間隙に対する小さ な粒子の体積(空間率を含む)の割合(以下、空間率体 積比と呼ぶ)を単粒度の空間率(文献14)の式(1))の計 算に考慮することで補正することとした。補正に利用す る式(6)における重み係数w1,w2は粒子jの六方最密充填 の隙間に収まる粒子径以下の粒子kの合計かさ容積と、 粒子jの空間率から計算した。

$$\varepsilon = \sum_{j=1}^{m} S v_j \cdot \varepsilon_j \tag{5}$$

$$\varepsilon_j = \beta_j \cdot \sum_{k=1}^m Sa_k(\varepsilon(j,k) + w1(k)) \tag{6}$$

$$w1(k) = \varepsilon(j,j) \times (1 - w2(j,k))$$
$$w2(j,k) = \frac{\sum_{k=j}^{m} (Sv_k/(1.0 - \varepsilon(k,k)))}{Sv_j/(1.0 - \varepsilon(j,j)) \cdot \varepsilon(j,j)}$$

$$\beta_j = \widetilde{\varepsilon}_j / \varepsilon(j, j)$$

$$Sa_k = \frac{Sv_k/Dp_k}{\sum_{i=1}^m Sv_i/Dp_i}$$

ここに, *ε*:空間率 (= 1.0 - Cs), *i*, *j*: 大きい粒子

から数えた粒子径の番号, *Sv_j*, *Sv_k*:粒子 j,k の体積基準 の混合分率, ε_j:粒子 j に着目した空間率, β_j:比例定数, *m*:粒子径の数, *Sa_k*:面積基準の混合分率, ε(*j*,*k*):2粒 子の部分的な空間率, w1(*k*):空間率体積比に関する重み 係数 1, w2(*j*,*k*):空間率体積比に関する重み係数 2 (0.0~1.0), *D*(*j*), *D*(*k*):粒子 j,k の粒子径 (mm), *R*(*j*): 粒子 j の六方最密充填の間隙に収まる粒子半径で0.224・ *D*(*j*)/2 (mm), ε_j:単粒子 j のみを詰め込んだ際の空間率 の測定値, *Dp_k*, *Dp_i*:粒子 k, i の粒径 (mm), である。 1.2. 実験結果

(1) シリーズ1の結果

練上がりのコンシステンシー試験結果を表-6 に示す。 骨材分散距離と流動性の関係を図-3 に示す。骨材粒度 分布は No.1,2 が粒度分布①, No.3,4 が粒度分布②となる ように調整したが,練上がりの空気量の影響で骨材分散 距離は同等とはなっていない。モルタルおよびスランプ のいずれにおいても骨材分散距離と流動性には正の相関 が確認できた。この実験における骨材分散距離と流動性 の関係においては,細骨材の粒形による顕著な影響は認 められなかった。

次に、コンクリートとモルタルのブリーディング率の 関係、ブリーディング率と細骨材分散距離の関係をそれ ぞれ図-4、図-5に示す。図-4よりコンクリートとモ ルタルのブリーディング率には一定の相関があり、モル タルの性状が支配的であることがわかる。また、図-5よ りモルタルのブリーディング率は細骨材分散距離と相関 があるため、コンクリートのブリーディング率は細骨材 分散距離で説明できるものと推定できる。また、骨材分 散距離とブリーディングの関係においても細骨材の粒形 による顕著な影響は認められなかった。

表-6 シリーズ1 コンシステンシーの試験結果

No.	落下 また	落下無しのフロー (mm) またはスランプ (cm)				
	1 回目	2回目	平均	(70)		
1	207 mm	213 mm	210 mm	1.77		
2	178 mm	176 mm	177 mm	3.13		
3	105 mm	104 mm	105 mm	9.60		
4	109 mm	110 mm	110 mm	14.18		
5	18.5 cm	19.0 cm	18.8 cm	4.90		
6	14.5 cm	12.5 cm	13.5 cm	5.00		
7	4.0 cm	4.0 cm	4.0 cm	3.40		
8	4.5 cm	4.5 cm	4.5 cm	5.90		

(2) シリーズ2の結果

練上がりのコンシステンシーの試験結果を表-7 に示 す。スランプと骨材量の関係を図-6 に示す。スランプ と骨材分散距離の関係を図-7 に示す。スランプと骨材 量は,骨材粒度分布毎に一定の相関があることがわかる。 一方,骨材量や粒度分布が異なっていても,スランプと 骨材分散距離には一定の明確な正の相関あることが確認 できた。

以上より,本手法で計算した骨材分散距離により,骨 材量や骨材粒度分布の影響を包括してスランプを表現す ることが可能であるといえる。粒度分布が大きく異なる 場合においても骨材分散距離によってコンクリートの流 動性(スランプ)を概ね説明できることが確認できた。

2. 単位水量低減の検討(実験2)

2.1. 実験概要

実験2では本手法を利用することで既存の配合から単 位水量を低減する検討を実施した。対象の配合は実際の ダムで使用予定の,特記仕様書に示された有スランプコ ンクリートの配合(以下,基本配合)である。基本配合 は従来の配合設計手法により定められていると考えられ る。この基本配合から流動性を変えずにさらに単位水量 を低減することを試みた。基本配合の目標スランプは8 ±1cm,目標空気量は5±1%である。

(1) 使用材料

使用材料を表-8 に示す。結合材は中庸熱セメントに 対してフライアッシュ II 種を質量比で3 割置換したも のである。骨材には砕石,砕砂を使用し,粗骨材の最大 寸法は40mm とした。骨材の表乾密度はS:2.63g/cm³,

表-7 シリーズ2 コンシステンシーの試験結果

No	7	ペランプ(cm)		空気量
INO.	1 回目	2回目	平均	(%)
9	15.5	15.5	15.5	4.3
10	14.5	13.5	14.0	3.9
11	9.5	10.0	9.75	4.4
12	18.0	16.5	17.25	4.7
13	12.5	10.5	11.5	4.1
14	8.0	7.5	7.75	5.3
15	16.0	15.5	15.75	5.2
16	8.5	8.0	8.25	3.8
17	35	3.0	3 25	64

G1: 2.65g/cm³, G2: 2.66g/cm³ であった。

(2) 配合および試験項目

配合を表-9に示す。Nは基本配合であり、スランプ が 8cm±1cm になるように減水剤量を調整した。粒度 1-49, 粒度 2-46 は, 配合 N から骨材粒度分布を調整した 配合である。各配合の骨材は、骨材分散距離が大きくな るように、単位水量低減予測線(図-8)を用いて S, G1, G2の混合比により骨材粒度分布を調整して用いた。各配 合の骨材粒度分布を図-9に示す。また、粒度1-49はW/B 固定の条件で単位水量を129kg/m³に低減し, 粒度 2-46 は 単位結合材量固定の条件で単位水量を 129kg/m³ に低減 している。粒度2-46のW/Bは結果として46%になった。 いずれも減水剤の使用量は同等とした。ここで、単位水 量低減予測線は2章で提案した手法を用い,基本配合 N と骨材分散距離が同様になるような単位水量を予測した ものである。骨材分散距離は配合空気量を5.0%として計 算している。これにより,基本配合Nと骨材分散距離が 同程度になる単位水量は粒度 1-49 が 132kg/m³, 粒度 2-46 が 129kg/m3 程度となったが、練混ぜにおいては比較 のためいずれの配合も単位水量を 129kg/m³として実施 した。

試験項目は、スランプ(JISA1101)および空気量(JIS A 1128)を計測した。スランプは実験1と同様に2回の 測定値の平均を使用した。一部の配合で圧縮強度(JISA 1108)、ブリーディング(JISA1123)の測定を行った。

2.2.実験結果

試験結果を表-10 に示す。粒度 1-49, 粒度 2-46 のい ずれもスランプが目標スランプ 8±1cm を満足する結果

表--8 使用材料

分類	項目	記号	内容 (FM:粗粒率,G:実積率)
粉体	セメント	С	中庸熱セメント, 比表面積 3170cm²/g, 密度 3.21g/cm3
	フライアッシュ	F	II種, 比表面積 4220cm²/g, 密度 2.33g/cm3
	細骨材	S	砕砂, 硬質砂岩(栃木県), FM3.04, G63.7
骨材	粗骨材	Gl	2005 砕石, 硬質砂岩(栃木県), FM6.60, G58.7
		G2	4020 砕石, 硬質砂岩(栃木県), FM7.92
混和剤	減水剤	Ad	マスターポゾリス No.8
	AE 剤	AE	マスターエア 202

表-9 実験2 配合表 (kg/m³)

配合	W/B	s/a	W	С	F	S	G1	G2
Ν	49 %	40 %	137	196	84	753	570	570
粒度 1-49	49 %	35 %	129	185	79	672	252	1008
粒度 2-46	46 %	35 %	129	196	84	666	375	875

A		
表一10	_ 実験 2	1 試験結果

			- Hereite	
副会	2回の平均	空気量	圧縮強度	フ゛リーテ゛ィンク゛
HC.C.	スランプ(cm)	(%)	(N/mm^2)	率 (%)
Ν	7.35	6.3	21.2	1.60
粒度 1-49	8.55	5.8	_	_
粒度 2-46	7.65	5.9	27.6	0.81

となった。粒度 2-46 は予測通りのスランプとなった。粒 度 1-49 は予測より大きなスランプとなったが、単位水量 が低減可能という定性的な傾向としては概ね予想通りの 結果である。粒度 2-46 では単位水量および W/B を低減 したことで基本配合Nに対してブリーディング率が約半 分, 圧縮強度が約 1.3 倍に上昇した。

以上より,提案した手法を用いることで,基本配合か ら流動性(スランプ)を変えずに単位水量を低減するこ とが可能である一例を示した。

3. まとめ

本研究では、単位水量低減によるコンクリートの基本 性能の向上を目的として、余剰ペースト膜厚理論を用い て所定の流動性(スランプ)を確保した上で単位水量を 低減する検討を行った。本研究によって得られた知見は 以下のとおりである。

- (1) 細粗骨材実積率に鈴木らの空間率推定手法⁹を改良した手法で求めた値を使用し、骨材分散距離を 算出する手法を提案した。
- (2) 本手法で算出した骨材分散距離および細骨材分 散距離と流動性(スランプおよびフロー)には一 定の相関が確認された。細骨材の粒形がこの関係 に与える影響は小さく,骨材量や骨材粒度分布を 包括して表現可能であった。
- (3) 本手法で算出した細骨材分散距離は、細骨材の粒形によらず、コンクリートのブリーディング率と相関があった。
- (4) 本手法を利用した単位水量低減予測線を用いて、 単位水量を低減することが可能であった。骨材粒 度分布の調整による単位水量の低減は概ね予測 通りとなった。

参考文献

- ・ 寺西浩司,谷川恭雄:骨材の粒度分布がコンクリートおよびモルタルに及ぼす影響,日本建築学会構造 論文集,第614号,pp.9-15,2007.4
- C. T. Kennedy : The Design of Concrete Mixes, Proceedings of the American Concrete Institute, Vol.36, pp.373-400, 1940
- 橋爪進,谷川恭雄,森博嗣:細骨材の寸法・形状お よび混入率がフレッシュモルタルの降伏値に及ぼ す影響,日本建築学会構造系論文集,第558号,pp.23-29,2002.8
- 松下博通,近田孝夫,前田悦孝:コンクリートの配 合設計への余剰ペースと膜厚理論の適用に関する 基礎的研究,土木学会論文集,No.578,V-37, pp.57-70, 1997.11
- 5) 近田孝夫:余剰ペースト厚さによるコンクリートの コンシステンシーの評価に関する基礎的研究,九州 大学学位論文,1997.3
- 6) 三宅淳一,松下博通:フレッシュコンクリートの変形性を最大にする細骨材率に関する研究,土木学会論文集 E, No.2, pp.361-370, 2008.6
- 7) 寺西浩司ほか:細骨材および調合がコンクリートの ワーカビリティに及ぼす影響,日本建築学会構造系 論文集,第80巻,第707号,pp.9-18,2015.1
- 8) 渡部孝彦,武田均,橋本理:細骨材の粒度分布を調 整したコンクリートの骨材分散距離一流動性の関 係性,令和元年度土木学会全国大会第74回年次学 術講演会,2019
- 9) 鈴木道隆,市場久貴,長谷川勇,大島敏男:粒度分 布のある多成分粒子ランダム充填層の空間率,化学 工学論文集,第11巻,第4号,pp.438-443,1985