論文 中性子線透過イメージングを用いたシリカフューム混入が水分浸透 性に与える影響に関する検討

久保 善司*1·小黒 拓郎*2·水田 真紀*3·大竹 淑恵*4

要旨:コンクリート構造物の劣化において有害物質の侵入は必須であり,水分浸透性は劣化の進行を支配す る要因の一つとされる。既報では,中性子線透過イメージングを用いてシリカフュームの細孔構造の緻密化 によって大幅に水分浸透性を改善することを確認した。本研究では,既報よりも高い水セメント比を対象と したコンクリートにシリカフュームを混入し,その水分浸透性に与える影響を検討することとした。その結 果,比較的高い水セメント比のコンクリートにおいても,シリカフュームを混和することにより,大幅にコ ンクリートの水分浸透の抑制が可能となることを確認できた。

キーワード:中性子線透過イメージング,水分浸透性,シリカフューム,流束分布

1. はじめに

コンクリート構造物を劣化させる原因として,塩害, 中性化,凍害,およびアルカリシリカ反応等が挙げられ る。コンクリート構造物の劣化が発生・進行するために は,各劣化における有害物質の侵入が必須となる。さら に,これらの有害物質は水分とともにコンクリート中へ 浸透することが多く,水分移動特性は劣化の進行を支配 する要因の一つとされる。

現状では、コンクリート中における水分移動現象を把 握する方法として、含水率センサを埋設する方法、水分 を浸透させた供試体の割裂面の目視観察により浸透深さ を計測する方法などが一般的である¹⁾。割裂する場合に は、同一の供試体・条件において繰り返すことによる再 現性の確認ができない。含水率センサを埋設する方法で は、リアルタイムでの浸透速度そのものを十分に把握し ているとは言い難い。

近年,コンクリートの水分浸透性を把握する手法とし て、期待されているのが、中性子線透過イメージングで ある。中性子線透過イメージングによる方法は、水素に 強く散乱される中性子の性質を利用することで、コンク リート中を移動する水の透過像を得る一種のレントゲン である²⁾。非破壊試験であるため、同一の供試体を繰返 し用いることができ、再現性確認のための測定も可能で ある。小型中性子源を利用したコンクリートの透過画像 に対してノイズ除去、強度補正、画素の結合を行うこと で空間誤差が1%以下になることが確認されている²⁾。ま た、厚さ5 cmのコンクリート供試体に対して吸水した質 量と中性子線透過画像から導出した水分量を比較し、中 性子線透過イメージングにより水分浸透の経時変化を評 価できることが確認されている³⁾。

コンクリートの高強度化に用いられる混和材としてシ リカフュームに着目し、その混和がコンクリートの水分 移動特性に与える影響について中性子線透過イメージン グ法を適用した著者らは、既報⁴⁾において、シリカフュ ームの混和はコンクリートの水分浸透抑制能を大幅に改 善することが可能であり、同一 W/B のコンクリートより も水分浸透性が小さくなることを明らかにしている。

シリカフュームはコンクリートの高強度化に利用され ることが多く、これらに関する検討は多くの知見が蓄積 されている^{例えばう。}一方、汎用的に用いられている一般的 な強度、すなわち、水セメント比 55%程度のコンクリー トに適用した場合の緻密化への影響に関する検討は少な い。供用年数が 50 年以上となったコンクリート構造物 の老朽化が社会問題となっており、これらを念頭におく と、新設される構造物における耐久性の確保は必須とさ れる。少量のシリカフュームを混和することにより、水 分浸透抑制が大幅に高まる効果が、一般的な強度のコン クリートにおいても期待できれば、厳しい環境下におい ての耐久性確保の一つの方法となり得る。他方、コンク リート強度と耐久性は必ずしも合致せず、耐久性能とコ ンクリート強度は区別すべきとの指摘もされている^の。

本研究では、既報 4よりも高い水セメント比を対象と したコンクリートにシリカフュームを混入し、その水分 浸透性に与える影響を検討することとした。検討におい ては、既報において検討した W/C=35%における研究成 果と比較検討を行うこととした。

*1 金沢大学 理工研究域 地球社会基盤学系 准教授 工博 (正会員)

*2 小黒数学研究所 所長 理修 (非会員)

^{*3} 理化学研究所 光量子工学研究センター 中性子ビーム技術開発チーム 研究員 工博 (正会員)

^{*4} 理化学研究所 光量子工学研究センター 中性子ビーム技術開発チーム チームリーダー 理博 (正会員)

表-1 シリカフュームの物性および化学組成

密度	BET 比表面積	化学組成 (%)										
(g/cm^3)	(m ² /g)	Ig.loss	SiO ₂	MgO	SO_3	Cl	Moisture	Free Si	Free CaO			
2.23	15.6	1.7	93.4	0.77	0.35	0.042	0.3	0.03	0.0			

	WIG	WD	an la	,	単位量 (kg/cm ³)						空気	l. Tra	毛細管	ゲル	Powers O
要因名	W/C	W/B	SF/C	s/a	W	C	c	C	CE	CA1	量	水和	空隙	空隙	粗大空隙
	(70)	(70)	(70)	(70)	w	C	2	G	SF	CA2	(%)	及	(%)	(%)	率 (%)
55-175	55	50	10	46	175	319	791	918	31.9	1.10	2.2	0.86	4.74	6.12	6.04
										2.60					0.94
55-155	55	50	10	49	155	282	877	918	28.2	1.80	6.4	0.86	4.06	5.19	10.46
										2.30					
50 155	50	50	10	10	155	210	951	019	21	2.50	47	0.82	2 52	5 52	e 22
50-155	50	50	10	40	155	510	031	918	51	2.50	4.7	0.82	5.55	5.55	8.23
35-0L	35	35	0	46	160	457	769	901	0	5.49	3.5	0.72	2.56	6.34	6.06
35-0H	35	35	0	46	160	457	769	901	0	5.49	5.1	0.72	2.46	6.25	7.56
35-10L	35	32	10	44	160	457	717	901	46	5.49	3.3	0.68	1.43	6.86	4.73
35-10H	35	32	10	44	160	457	717	901	46	5.40	5.9	0.68	1.30	6.69	7.20

表-2 コンクリート配合

※CA1: AE 減水剤, CA2: AE 助剤。35-0 および 35-10 については高性能 AE 減水剤のみを使用。

2. 実験概要

2.1 供試体

(1) 使用材料

セメントとして普通ポルトランドセメント(密度: 3.16g/cm³),細骨材として手取川産川砂(密度:2.59g/cm³), 粗骨材として手取川産川砂利(密度:2.59g/cm³,最大寸 法Gmax:20mm)を用いた。また、シリカフュームとし て市販のもの(密度:2.23g/cm³,活性度指数材齢7日: 101%,材齢28日:121%)を用いた。シリカフュームの 物性および化学組成を**表-1**に示す。

(2) コンクリート配合

配合を表-2 に示す。本研究では汎用のコンクリート を想定し,W/C を 55%および 50%(目標スランプ 10cm ±2.5cm,空気量 5%±1.5%)とした。また,シリカフュ ームはセメント質量に対して外割置換 10%とした。単位 水量(水分移動の領域)の影響を検討するため, W/C=55%については単位水量を 2 水準(175 および 155kg/m³)用意し,要因名に単位水量 175 および 155 の 数字を付して示した。表-2 には,既報⁴⁾で実施した低 水セメント比のコンクリートの配合 35-0, 35-10 も示し, 要因名の末尾の H と L は空気量の多寡を示す。

既往研究において⁷⁾, Powersの水和モデルを用いて算 出した粗大空隙率(毛細管空隙+フレッシュ時空気量)に よって粗大空隙の大小の評価が可能と報告されている。 本研究においては,空隙構造の概略を知るために, Powers の水和モデル^{8),9)}を用いた。計算結果を**表-2**に併記した。 Powers の水和モデルは本来セメントペーストの構成相 割合を求めるもので,セメントの密度および単位水量と 単位セメント量,水和度からセメントペーストの構成相 割合を算出できる。本研究ではコンクリートを対象とし ているため, Powers の水和モデルを用いて算出したセメ ントペーストをコンクリート配合に置き換え,コンクリ ートの構成相割合を求めた。シリカフュームをセメント に置き換え,計算に必要となる水和度については,関ら ¹⁰⁾の実験結果を参考に,材齢とW/Bから0.82から0.86 と仮定した。なお,既報⁴⁾の水セメント比のコンクリー トにおける水和度は,同文献を参考とし,0.68から0.72 と仮定した。

(3) 供試体作製

コンクリート角柱供試体 (75×75×400mm) は打設翌 日脱型した。その後,十分な養生を短期間で得るために 2 週間の 50℃温水養生と 2 週間の 20℃水中養生を行っ た。養生後,角柱供試体の中央部から厚さ 35mmの供試 体 (75×75×35mm) を 2 個ずつ切り出し,供試体名に番 号 a, b を付し,区別した。既報の低水セメント比のコン クリートでは,単位セメント量が増加すると,浸透水分 に対する検出感度が低下する傾向が報告されている³⁾。 そのため,浸透性の評価が困難となる可能性が想定され たため,供試体厚さを薄くし,35mm としている。本研 究では,水セメント比はそれほど小さくないが,比較の ため,供試体厚さを 35mm とした。なお,コンクリート の圧縮試験用には円柱供試体(直径 100mm,高さ 200mm) を作製した(養生条件は上記同様)。

2.2 コンクリートの物性試験

(1) 圧縮強度

シリカフュームによる強度増加の影響を把握するため, 万能試験機を用いて圧縮強度を測定した。圧縮強度は材 齢約28日で実施した。

(2) 空隙率

水分浸透試験に用いた供試体の空隙率 P は,同一の供 試体を用いてアルキメデス法を用いて求め,式(1)より算 出した。

図-2 理研小型中性子源RANSでの中性子イメージングシステム

$$P(\%) = \frac{W_s - W_d}{V_s} \cdot \frac{l}{\rho_w} \cdot 100 \tag{1}$$

ここで, W_s: 飽水質量(g), W_d: 40℃乾燥後質量(g), V_s: 飽水時の体積(cm³), ρ_w :水の密度(g/cm³)である。

2.3 水分浸透試験

供試体 (75×75×35mm) は同一要因につき2体を用意 し,温度40℃で約3週間乾燥させ,水分浸透試験を開始 した。水分浸透試験は底面が 5mm 程度水中に浸漬する ようにして行った。浸透試験開始後の質量変化(吸水量) を電子秤(精度 0.1g)で測定した。水分浸透試験の様子 を図-1に示す。

2.4 中性子線透過イメージによる水分定量

理研小型中性子源システム RANS (図-2 参照) を利 用し,中性子線透過イメージングを実施した。中性子線 透過イメージングでは、中性子が水素に強く散乱される 性質を利用することで、 コンクリート中に存在する水分 の多少が透過率の差となり、透過率を陰影の濃淡で表し た画像を得ることができる。本研究では、水分浸透試験 開始前, 5, 24, 50, 149 および 198 時間後の中性子線透 過画像を撮影し,初期状態との差分を取ることで水分移 動の経時変化を観察した。また、検出器には、イメージ センサに冷却型 CCD カメラを取り付けた市販の中性子 イメージインテンシファイア(視野サイズ180×120mm) を使用した。なお、中性子線照射時間は3分間である。

水分浸漬前の透過画像を It=0,任意時間浸漬後の透過 画像を Itとする。時間 t の間に浸透した水の透過画像は 水分浸漬前 It=0 との差 AT となり、以下で表される。

$$\Delta T = -\ln\left(\frac{It}{I_{t=0}}\right) = a_w d_w \tag{2}$$

ここで、awは単位長さ当たりの水の減衰係数、dwは中性 子線透過方向に存在する水の総和である。よって、供試 体全範囲の AT の総和 Wimage は,時間 t の間に浸透した水 分量に相当する。

得られた透過画像は,既往の研究 3),4),7)を参考にノイズ 除去, 強度分布補正, 画素結合, ブランキングによる γ 線の影響除去を行った。なお、画素結合は、中性子線の

揺らぎによる誤差を低減し、さらに小型中性子源から発 生される小さな中性子束でも質の良い(S/N の高い) 画 像を得るために行った。本研究では、2枚の透過画像の 輝度値の標準偏差を比較することで、空間誤差 1%以下 となる画素の大きさを検討し、40×40=1600 画素を結合 して1 画素 1.8mm (CCD カメラの解像度は 45µm/pixel) の透過画像を水分定量に使用した。

透過画像より算出した水分量 Wimage と浸透水分の秤量 値の関係を図-3 に示す。両者の間には、供試体毎に比 例関係が認められる。各関係の R² 値はすべて 0.99 以上 であり,中性子線透過イメージングで得られる透過画像 は、コンクリートに浸透する水分に対して定量性を有し ていることを確認した。したがって、コンクリートへの 浸透水分の評価においては、各供試体の図-3の関係を 利用し、画素毎の透過率を水分量に変換した。

中性子線透過画像の一例(浸透試験開始16時間の35-0H-1)を図-4に示す。左右端の吸水量が多く、この傾 向は他の供試体でも共通して観察された。左右端が型枠 面であり,供試体内部での水分移動とは条件が異なるこ

とが一因と推測される。既往の研究 4においても型枠面 を切断した部分で水分移動を評価していることから、本 研究においても、両端部(10.8mm)を除外して、後述の 計算を行うこととした。

3. 結果及び考察

3.1 コンクリートの品質評価

(1) 圧縮強度

圧縮強度結果を図-5 に示す。図-5 には既報の研究 成果⁴⁾から抽出した結果も併記した。本研究では温水養 生(50℃)による養生促進を行ったため,既往の研究⁴⁾ から材齢3カ月の結果を抽出した。

W/C=55%では、単位水量が多い 55-175 の圧縮強度が 高かった。他方、W/C=50%のものは、単位水量が多い 55-155 と概ね同程度の強度を示した。W/C が同じ 55%のも のの強度が異なった原因は空気量によるものと考えられ、 単位水量の大きい 55-175 のものの空気量は 2.2%と小さ かったため、同一 W/C の 55-155 よりも強度が大きくな ったものと考えられる。したがって、W/C=55%にシリカ フュームを混和したものの強度としては 40N/mm² 程度 は確保されるものと推察される。ただし、空気量が与え る影響についてはさらなる検討を行う必要がある。なお、 併記した既往の研究結果⁴⁾においても、同一 W/C のも のにおいて空気量の小さいものの方が強度は小さくなっ ており、低い W/C においても同様の結果が得られた。

(2) 空隙率

Powers の水和モデルを用いて計算した空隙と, アルキ メデス法を用いて算出した空隙を比較した。既往の研究 ^{4),7)}によれば, 粗大空隙(毛細管空隙+空気量)と, アル キメデス法を用いて算出した空隙量には相関があり, 40℃の乾燥によって生じた空隙(水分逸散が生じた空隙) は比較的粗大な空隙に対応するとされている。アルキメ デス法を用いて算出した空隙率 P と, Powers の水和モデ ルを用いて算出した空隙率の関係を図-6 に示す。比較 のため,著者らが既報で報告した W/C=35%のコンクリ ートの結果⁴⁾を併記した。

Powers の水和モデルを用いて算出した空隙率とアル キメデス法を用いて算出した空隙率 P の関係には,ばら つきはあるものの,概ね相関が認められた。本研究においても,既報⁴⁾と同様に,所定の乾燥期間後の粗大空隙 を表す指標としてアルキメデス法による空隙率Pを指標 とすることとした。

なお, 既報⁴⁾の結果も含めて, 水セメント比およびシ リカフューム混和量が同一のもの同士を比較すると, 空 気量が多いものの方が若干アルキメデス法による空隙率 が大きい傾向にあった。粗大空隙は Powers モデルに基づ き算定した毛細管空隙にフレッシュ時の空気量を加えて おり, フレッシュ時の空気が打設時に乱されていなけれ ばこれらは粗大空隙の一部を形成するとした。さらなる 検討は必要であるものの, 上記の傾向が得られたことは その妥当性の証左と考えられる。

3.2 水分浸透特性の評価

(1) 水分浸透試験

水分浸透試験結果を図-7 に示す。いずれの供試体も 時間とともに吸水量が増加し,その吸水速度は経過時間 とともに減少した。W/C=55%および50%と水セメント比 が異なるものの,概ね同程度の吸水量となった。W/Cの 相違よりもシリカフュームによる緻密化による水分浸透 抑制効果が卓越したものと考えられる。なお,同時刻の 吸水量を比較すると,50-155 の吸水量は最も小さく,55-155 の吸水量は他のものより大きい。わずかな差ではあ ったものの,空隙率 P が小さいものほど吸水量が小さい 結果が得られており,空隙量に対応した結果が得られた ものと考えられる。

他方, 既報⁴⁾の低水セメント比の結果と比較すると, シリカフューム無混入の35-0Hおよび35-0Lと概ね同程 度の吸水量を示した。W/C=55%および50%にシリカフュ ームを混入したもののW/Bは50%および45%であり, W/Bは大きいにもかかわらず,同程度の水分浸透抑制性 を有するものと考えられる。したがって,比較的高い水 セメント比のコンクリートにシリカヒュームを混入した 場合にも水分浸透抑制性が大幅に改善することが可能で あるものと考えられる。

(2) 吸水量分布

透過画像から高さ方向の吸水量分布を算出した。得ら れた吸水量分布の例を図-8に示し、既報⁴⁾における吸

図-9 吸水量分布 (35-0Ha)

水量分布の例を図-9 に示す。55-155a と既報の 35-0Ha では中性子イメージングの取得時間が異なるため,同一 の経過時間では比較できないものの,両者では水分浸透 範囲が異なり,55-155a のものの水分浸透範囲が広がる速 度は 35-0Ha よりも遅い。すなわち,同一時間における浸 透深さの進行速度は 55-155a の方が小さくなるものと考 えられる。他方,60mm 以上の領域(上面付近)ではそれ 以下の領域よりも吸水量が多い。これは,型枠面におけ る水分移動と吸湿によって上面側に供給された水分の影 響によるものと推察される。前項で両者の吸水量が概ね 同程度となったのは,型枠面近傍の水分浸透および吸湿 によるものである可能性が高い。

したがって、55-155aの水分浸透範囲の進行速度は35-0Haよりも小さいものと考えられる。また、粗大空隙の 多い 55-155aの水分浸透が抑制された理由としては、シ リカフュームの混和によって水分浸透を左右する空隙 が充填され、空隙径が小さい側に変化したためと考えら れる。

前項の水分浸透試験結果(吸水量)の結果と合わせる と、一般的に用いられる W/C=55%程度のコンクリート にシリカフュームを混入することによって、吸水量のみ ならず、水分浸透範囲およびその進行速度が大幅に抑制 されるものと考えられる。

(3) 流束分布

吸水量分布をもとにコンクリート中の水分流束を算 出した。流束(g/day)は24時間当たりに、ある高さの浸透 面(7.5×3.5cm)を通過した水の質量と定義した。浸透開

図-11 浸透高さの決定

始から 50 時間および 50~149 時間における流束分布の 例を図-10 に示す。図中には、既報⁴⁾の 35-10Ha の結果 も併記した。なお、既報とは中性子線イメージングの取 得時間が異なるため、既報の結果は、浸透開始から 44 時 間および 64~164 時間における流束分布を示す。

吸水初期の50時間(既報44時間)では,浸透面付近 の流束は大きく,供試体高さが大きくなると流束が低下 する傾向を示した。一方,吸水時間が長期(55から149 時間,64時間から164時間)になると,いずれの供試体 高さにおいても流束が小さくなった。

吸水初期において,流束が小さくなり,概ね0となる 供試体高さは、55-155a では 30mm 付近となり、35-0Ha では40mm 付近となった。前項で述べた同様、55-155a の 浸透範囲は 35-0Ha よりも小さいことが流束分布におい ても確認された。他方,この流束がほぼ0となる供試体 高さは水分浸透特性を評価する一つの目安となるものと 考えられる。しかし,流束が概ね0となる供試体高さを 厳密に定義することは困難であるため、本研究では、吸 水量分布において高さ方向の吸水量がほぼ一定となる高 さを求めることとした。吸水量分布を2つの直線で近似 し、その直線の交点の高さを浸透高さと定義した。図-11 に 55-155a における浸透高さの決定例を示す。なお、 この高さは、流束が一定となる高さと概ね一致するもの と仮定した。

(4) 浸透高さ

吸水量分布から求めた浸透高さ(吸水初期)とアルキ メデス法を用いて算出した空隙率 P との関係を図-12

に示す。図-12には、既報^{4),7)}の低水セメント比および

シリカフューム無混和の W/C=55%における実験から浸 透高さを算定した結果も併記した。

W/C=55%のものにおいて、シリカフューム無混和(図中175,155L,および155H)と混和したものを比較すると、シリカフュームを混和したものの浸透高さはきわめて低い。

シリカフュームを混和したもの同士を比較すると,粗 大空隙率が大きいほど浸透高さは高く,W/C=55%および 50%のものは,シリカフュームを混和したW/C=35%のも のより浸透高さは高かった。シリカフュームが混和され るコンクリートの水セメント比が低いほど,より緻密な 組織が形成されたものと考えられる。

シリカフューム無混和の W/C=35%のものと,今回の 55%および 50%を比較すると,55%および 50%のものの 空隙率 P は大きいものの,浸透高さは W/C=35%のもの より小さい。すなわち,W/B が大きいにもかかわらず, W/C=55%および 50%のものにシリカフュームを混和し たものの方が水分浸透範囲が小さくなった。したがって, 一般的な強度のコンクリートにシリカフュームを混和し た場合には,W/B の低下よりも大きな水分浸透抑制効果 が得られるものと考えられる。これまでシリカフューム は高強度化を目的として用いられてきたが,厳しい環境 下にある一般的な強度をもつコンクリート構造物の耐久 性を高める方策としての活用が期待される。

4. 結論

本研究の範囲で得られた主な結果を以下に示す。

- (1) シリカフュームを混和した W/C=55%および50%の水 分浸透性の相違は顕著でなく,混和されるコンクリ ートの W/C の相違よりもシリカフューム混和による 水分浸透抑制効果が卓越した。
- (2) シリカフューム無混和の W/C=35%のものと、55%および 50%にシリカフュームを混和したものの吸水量は同程度であり、W/B が大きいにもかかわらず、大きな水分浸透抑制効果が得られた。

- (3) シリカフューム無混和の W/C=35%のものと、55%および 50%にシリカフュームを混和したものを比較すると、55%および 50%のものの空隙率 P は大きいものの、W/C=35%のものより小さい浸透高さとなった。
- (4) 一般的な強度のコンクリートにシリカフュームを混 和した場合には、W/Bの低下よりも大きな水分浸透 抑制効果が得られる。

謝辞

本研究では,吉村雄一氏(元(株)トプコン,理化学研究 所客員研究員,現鹿島建設(株)技術研究所)に多大なご協 力を頂きました。ここに記して謝意を表します。

参考文献

- 鈴木浩明,上田洋:コンクリートの品質が水分浸透 深さの時間依存性に及ぼす影響,コンクリート工学 年次論文集, Vol.36, No.1, pp.676-681, 2014.7
- 2) 吉村雄一,水田真紀,須長秀行,大竹淑恵:小型中 性子源を利用したコンクリートの水測定方法の検 討,コンクリート工学年次論文集,Vol.39,No.1, pp.613-618, 2017.7
- 3) 吉村雄一,水田真紀,大竹淑恵,林崎規託:中性子 イメージングによる厚さ 5cm のコンクリート供 試体に浸透する水の非破壊定量手法の検討,コン クリート工学年次論文集, Vol.40, No.1, pp.1683-1688, 2018.7
- 4) 吉田千晶,久保善司,小黒拓郎,水田真紀:シリカフューム混入コンクリートの中性子線透過イメージングによる水分浸透性評価,コンクリート工学年次論文集,Vol.42,No.1,pp.1552-1557,2020.7
- 5) 長滝重義:シリカフュームに関する研究の現状,土 木学会論文集, No.506, V-26, pp1-14, 1995.2
- 6) 山岸千丈:強度の高いセメントは良いセメントか, 技術革新と社会変革, Vol.1, No.1, pp.21-32, 2008.4
- 7) 盛谷洋輝,久保善司,吉村雄一,水田真紀:中性子 線透過イメージングを用いたコンクリートの水分 浸透特性に関する基礎的研究,コンクリート工学年 次論文集, Vol.41, No.1, 2019.7
- T. C. Powers: Structure and Physical Properties of Hardened Portland Cement Paste, Journal of the American Ceramic Society, Vol.41, No1, pp.1-6, 1958
- A.M.Neville:ネビルのコンクリートバイブル,技報 堂出版,2004
- 10) 関慎吾, 笠原清, 栗山武雄, 河角誠:セメントの水 和結晶の面より見たるコンクリートの圧縮強度, コ ンクリートジャーナル, Vol.6, No.4, pp.31-38, 1968.4