論文 鋼管と鋼繊維を併用したハイブリッド型横拘束モルタルの支圧特性 に関する基礎的研究

関 俊力*1・小川 大貴*2・瀬古 繁喜*3・山田 和夫*4

要旨:本研究では、鋼管による外的拘束と鋼繊維による内的拘束を同時に受けるハイブリッド型横拘束モルタルを取り上げ、ハイブリッド型横拘束によって期待できる支圧特性の改善効果に及ぼす鋼管、鋼繊維およびそれらの相乗効果の影響について、一連の実験的および解析的検討を行った。その結果、鋼管と鋼繊維を併用したハイブリッド型横拘束モルタルの支圧強度は、支圧径が小さくなると鋼管と鋼繊維の併用による相乗効果が若干期待できるが、前報で示した離散的に横拘束する帯筋と鋼繊維を併用した場合ほどの相乗効果は期待できず、その効果は鋼管と鋼繊維による累加支圧強度に対して約16%増程度であることがわかった。キーワード:鋼管、外的拘束、鋼繊維、内的拘束、支圧強度、累加強度、相乗効果、エンドクロニック理論

1. はじめに

コンクリートの支圧強度については、古くから数多く の研究1)が行われており、後述の式(6)中の係数Cを定数 とする各種の推定式が提案されている。筆者らは,これ までに帯筋, 鋼管および鋼繊維によって各種横拘束を受 けるコンファインドコンクリートの1軸支圧特性2)~4)に 着目した一連の検討を行うとともに、前報5)では、帯筋 による離散的な外的拘束と鋼繊維による内的拘束を同時 に受けるハイブリッド型横拘束を取り上げ, ハイブリッ ド型横拘束によって期待できる1軸支圧特性の改善効果 に及ぼす帯筋, 鋼繊維およびそれらの相乗効果の影響に ついて検討を行った。本研究では、引き続き、鋼管によ 一様な外的拘束、鋼繊維による内的拘束、並びにこれら の横拘束が同時に作用するハイブリッド型横拘束を取り 上げ、ハイブリッド型横拘束によって期待できる1軸支 圧特性の改善効果に及ぼす鋼管, 鋼繊維およびそれらの 相乗効果,並びに前報5)で検討の対象とした帯筋による 離散的な外的拘束との違いについて検討を行った。

表-1 実験の概要

					*		
		鋼管詳細		鋼	支圧		
シリーズ名	W/C (%)	肉 厚 T (mm)	横補 強比 Pw (%)	寸 法 〈径×長さ〉 (mm)	体積 混入率 Vf (%)	等価横 補強比 eq Pw*1 (%)	径 B (mm)
PL50		-	_	_	ı	_	
TU50-T10		1.0	1.33	_	ı	_	
TU50-T23		2.3	3.07	_	ĺ	_	145,
SF50-S3		_	_	φ0.62×30	3.0	0.03	100,
SF50-L3	50	ı	_	φ0.75×60	3.0	0.50	
HY50-T10-S3		1.0	1.33	φ0.62×30	3.0	0.03	75,
HY50-T10-L3		1.0	1.33	φ0.75×60	3.0	0.50	50
HY50-T23-S3		2.3	3.07	φ0.62×30	3.0	0.03	
HY50-T23-L3		2.3	3.07	$\phi 0.75 \times 60$	3.0	0.50	

[注] *1: 鋼繊維の等価横補強比: 全面加力に関する実験結果と 予備解析結果との比較により決定した。

2. 実験方法

2.1 試験体

本実験では,表-1および図-1に示すように,何れの試験体も外径(D)×高さ(H)が ϕ 150×300mmの円柱体を使用し,実験要因として,鋼管(ストレート継ぎ目溶接された外径150mmの鋼管で,公称肉厚Tが1.0および2.3 mmの2種類),鋼繊維(無混入および体積混入率Vfが3.0%で,長さLfが30および60mmの3種類),横拘束の組合せ(無拘束,鋼管のみ,鋼繊維のみおよび鋼管と鋼繊維を併用したハイブリッド型横拘束の4種類),並びに支圧径(B:50,75,100および145mmの4種類)を取り上げた。

2.2 試験体の作製および養生方法

試験体の作製に際しては、鋼繊維混入試験体の実験結果に及ぼす母材の違いによる影響を取り除くために、母材モルタル(水セメント比W/C=50%)の調合は、鋼繊維の有無に関わらず一定、目標フロー値を220±10に設定して、普通ポルトランドセメント、多治見産の山砂(最大寸法:5mm、表乾密度:2.56g/cm³)、鋼管(肉厚1.0お

- *1 愛知工業大学大学院 工学研究科生産・建設工学専攻 工修 (正会員)
- *2 愛知工業大学 工学部建築学科研究生
- *3 愛知工業大学 工学部建築学科教授 工博 (正会員)
- *4 愛知工業大学 工学部建築学科教授 工博 (正会員)

表-2 標準調合表

W/C		Vf	S/C	单		kg/m		減水剤	
(%)	(mm)	(%)	3/C	セメント	水	細骨材	鋼繊維	(kg/m^3)	(kg/m^3)
50	5	0.0	2.4	570	285	1,368	_	3.99	0.80
30	3	3.0	2.4	553	277	1,327	236	3.87	0.77

[注]減水剤:HP-11, 消泡剤:AFK-2(100倍希釈)。

表-3 材料試験結果 (a) 母材モルタル

試 験	主止	密度	強度試	ヤング	
村 齢	食生	密度 (g/cm³)	引 張	圧縮	係 数
1/21 MH	7714	(g/cm)	(MPa)	(MPa)	(GPa)
34日	封緘	2.17	3.16	49.9	28.4

[注]材齢34日は、支圧実験直前の結果。

(b)鋼 管

肉 厚 (mm)	降伏点 (MPa)	引張 強さ (MPa)	ヤング 係数 (GPa)	伸び (%)	解放 ひずみ 度 (µ)
1.0	224	349	203	41.5	249
2.3	337	493	204	26.0	241

よび2.3mm, 降伏点: それぞれ224および337N/mm²), 両端フック付鋼繊維 (φ0.62×30mmおよびφ0.75×60mm, 引張強度: それぞれ1,270および1,225N/mm²),減水剤(ポ リカルボン酸系),並びに消泡剤(100倍希釈)を使用し て試し練りによって決定した。本実験で用いたモルタル の標準調合表を表-2に示す。各種横拘束モルタルの打 設は、何れの試験体もφ150×300mmの鋼製型枠に2層に 分けて行い, 突き棒と木槌を使用して締固めを十分に行 って各シリーズで4体の試験体を作製した。試験体は, 材齢1日で脱型した後、実験実施まで実験室内でシート 養生を行った。なお、試験体の打設面は、材齢27日目で 研磨を行い、材齢35~36日の間で1軸支圧実験を行った。 また、母材モルタルの力学性質を調べるためにφ100× 200mmの円柱供試体を作製し、支圧実験直前(材齢34 日, 封緘養生) の時点で圧縮強度試験 (JISA1108:2018) および割裂引張強度試験(JISA1113:2018)を行った。 母材モルタルおよび鋼管の材料試験結果を表-3に示す。

2.3 加力および測定方法

加力要領を図-2に示す。本実験では、各種モルタルの1軸支圧加力に容量2,000kNの油圧式耐圧試験機を使用し、鋼製の載荷板を介して毎分約1.0mmの載荷速度で1軸支圧載荷を行い、荷重ー軸変位関係の測定、破壊状況の目視観察、並びにデジタルカメラで破壊状況を撮影・記録した。なお、1軸支圧載荷中の試験体の軸変位(載荷板間変位(前掲の図-2参照))の計測には、ストローク50 mmの高感度ひずみゲージ式変位計を使用した。

3. 解析方法

本研究では、別報³)と同様に、鋼管、鋼繊維およびか ぶり部モルタルの横拘束によって生じる多軸効果成分と 支圧部・かぶり部界面で生じるせん断抵抗成分とに分類

図-2 試験体の加力および軸変位の測定要領

[注] Kp: 試験体端面と載荷 板間との界面の凹 凸の影響を反映し た線形バネ

KB: 横拘束による多軸 効果の影響を反映 した非線形バネ

Ks: 支圧部界面のせん 断抵抗の影響を反 映した非線形バネ

図-3 解析モデル3)

した解析モデル (**図**-3参照) を用いて,支圧荷重を受ける各種モルタルの荷重-軸変位関係の解析を行った。

3.1 荷重一軸変位関係の多軸効果成分

支圧荷重を受ける各種横拘束モルタルの荷重ー軸変位 関係の多軸効果成分は、別報3)で提案したエンドクロニック理論6を適用した1要素モデルで評価した。すなわち、変位制御を行った場合の1軸支圧載荷時の多軸効果成分は、平均軸ひずみ度増分Δε11が既知で平均軸応力度増分Δσ11が未知の問題となり、次式で与えられる増分形式の連立方程式を逐次解いて加算することで求めた。

$$\begin{bmatrix}
-1 & D_{2} & D_{2} \\
0 & D_{3} & D_{2} \\
0 & D_{2} & D_{3}
\end{bmatrix} \begin{bmatrix}
\Delta \sigma_{11} \\
\Delta \epsilon_{22} \\
\Delta \epsilon_{33}
\end{bmatrix} = \begin{bmatrix}
\Delta \sigma_{11}" - D_{1} \cdot \Delta \epsilon_{11} \\
\Delta \sigma_{22}" - D_{2} \cdot \Delta \epsilon_{11} \\
\Delta \sigma_{33}" - D_{2} \cdot \Delta \epsilon_{11}
\end{bmatrix}$$

$$D_{1}=K_{c}+4G_{c}/3, D_{2}=K_{c}-2G_{c}/3$$

$$D_{3}=D_{1}+\frac{b^{2}-a^{2}}{2a^{2}}E_{c}+\frac{a^{2}+b^{2}}{2a^{2}}e_{q}p_{w} \cdot E_{s}$$
(1)

ここに、 $\Delta \sigma_{ii}$ "は、エンドクロニック理論固有の非弾性応力増分、aおよびbは、支圧部半径および試験体半径、Kc、Gc、EcおよびEsは、弾性係数(添字cとs: モルタルと鋼管・鋼繊維)、 eqp_w は、等価横補強比(鋼管の場合は、 $eqp_w=p_w=2T/D$ 、鋼繊維補強モルタルの場合は、鋼繊維による内的拘束を等価な鋼管による外的拘束として評価した場合の横補強比3)で、全面載荷時の荷重一軸変位関係に関する実験結果と式(1)を解いて得られた解析結果が全体的に良く一致する値として求めた)である。

3.2 荷重-軸変位関係のせん断抵抗成分

支圧荷重を受ける各種横拘束モルタルの支圧部・かぶり部界面のせん断滑りによって生じるせん断抵抗成分の

荷重-軸変位関係には、別報3)と同様に、下式で示され るせん断応力度 (τ) - 平均軸ひずみ度 (ε) 関係を用いた。

$$\tau/\tau_{max} = \frac{A(\varepsilon/\varepsilon_{max}) + (n-1)(\varepsilon/\varepsilon_{max})^2}{1 + (A-2)(\varepsilon/\varepsilon_{max}) + n(\varepsilon/\varepsilon_{max})^2}$$
(2)

ここに、 τ_{max} と ε_{max} は、支圧荷重を受ける各種モルタ ルの最大耐力時の平均せん断応力度と軸ひずみ度, Aは Ei/Emax (EiおよびEmax: 初期剛性および最大耐力時の割 線剛性),nは実験定数である。なお,式(2)中の τ_{max} , ε_{max} , Aおよびnの値は、荷重-軸変位関係に関する実験結果 と上記のエンドクロニック理論を適用して求まる多軸拘 東成分との差をせん断抵抗成分の荷重-軸変位関係の実 験結果とみなして、非線形逆解析を適用して決定した。

3.3 全荷重ー軸変位関係の評価方法

1軸支圧載荷時の軸変位 (δc) は、式(1) および式(2) 中 の平均軸ひずみ度(それぞれ \mathcal{E} 11および \mathcal{E})に試験体高さ (H)を乗じることで算出し、全荷重(P)は、同一軸変位 時に式(1)で算出される応力度(σ 11)に支圧面積を乗じた 多軸拘束成分と式(2)によるせん断応力度(で)に支圧部 側面積を乗じたせん断抵抗成分との和として求めた。

4. 結果とその考察

4.1 最大圧縮耐力

図-4(a)~(f)は、鋼管と鋼繊維で横拘束されたハイ ブリット型横拘束モルタルの最大圧縮耐力の実験結果と 累加最大圧縮耐力の計算結果(「無拘束モルタルの支圧 強度 | + 「鋼管による外的拘束または鋼繊維による内的拘 束によって生じる支圧強度の増分」に支圧面積を乗じる ことにより算定した) との比較を試験体種類別に示した ものである。なお、図中には無拘束モルタルの最大圧縮 耐力に関する実験結果も併示してある。前報5)で示した 帯筋と鋼繊維で横拘束されたハイブリット型横拘束モル タルでは、支圧径Bが100mm以下の支圧加力を行った場 合に、帯筋と鋼繊維の併用による相乗効果が認められた。 これに対して, 鋼管と鋼繊維で横拘束されたハイブリッ ド型横拘束モルタルに関する本実験結果では、鋼繊維の 長さLfが60mmの試験体で、支圧径Bが50mmの支圧加力 を行った場合の最大圧縮耐力の実験結果は,鋼管の肉厚T に関わらず累加最大圧縮耐力よりも大きい結果は認めら れるが、支圧径がそれ以上の支圧加力および全面加力を 行った場合の実験結果は、累加最大圧縮耐力と大差のな い結果となっている。これは、別報2)で示したように、 鋼管モルタルの場合には、試験体側面が一様に横拘束さ れるのに対して, 帯筋で離散的に横拘束される場合の試 験体の破壊は、帯筋の配筋位置と比較して横拘束が相対 的に小さくなる帯筋間の領域に集中するため、帯筋間に あるモルタルが靭性的な性質を示すほど、帯筋による横 拘束の影響がより効果的に発揮されるためと思われる。

4.2 鋼管と鋼繊維の相乗効果を考慮したハイブリッド型 横拘束モルタルの支圧強度の推定

以下では、前報5)と同様の手順に従って鋼管による外 的横拘束と鋼繊維による内的横拘束を同時に受けるハイ ブリッド型横拘束モルタルの支圧強度の推定を試みる。

(1)無拘束モルタルの支圧強度

前報5)で示した方法と同様に、無拘束モルタルの支圧 強度を、全面圧縮強度と1軸支圧加力によって生じる支 圧強度の増分との和として、次の式(3)で定義した。

$$mFB = mF + \Delta mFB \tag{3}$$

ここに、mFB、mFおよび ΔmFB : それぞれ無拘束モル タルの支圧強度(N/mm²),全面圧縮強度(N/mm²) およ び支圧加力によって生じる支圧強度の増分(N/mm²)。

鋼管と鋼繊維で横拘束されたコンファインドモルタルの最大耐力のハイブリット効果

表-4 式(5)中のF値とC値の算定結果

	プレーン	鋼	管	鋼繊維			ハイブリッド			
項目	PL50	TU50 -T10	TU50 -T23	SF50 -S3	SF50 -L3	HY50 -T10 -S3	HY50 -T10 -L3	HY50 -T23 -S3	HY50 -T23 -L3	
F値	48.6	62.8	82.0	49.7	65.5	61.4	69.3	79.7	89.9	
C値	0.359	0.467	0.568	0.482	0.579	0.547	0.717	0.643	0.726	
\mathbb{R}^2	0.975	0.988	1.000	0.999	0.950	0.998	0.984	0.996	0.995	

(2)鋼管・鋼繊維で横拘束されたモルタルの支圧強度

鋼管または鋼繊維で横拘束されたモルタルの支圧強度も、無拘束モルタルの場合と同様に次の式で評価した。

a) 鋼管拘束の場合 :
$$stFB=stF+\Delta stFB$$
 (4)

b) 鋼繊維拘束の場合:
$$sfFB=sfF+\Delta sfFB$$
 (5)

本研究では、上記の式(3)~式(5)で表される支圧強度と支圧径の関係の数式化として、前報5)で示した方法と同様に、支圧強度推定式として一般的に用いられている

$$FB=F\cdot (A/Al)^{C} \tag{6}$$

ここに、A/A1: 支承面積/支圧面積。

を使用した場合の係数(F値とC値)の定量化を行った。 表-4に、無拘束、鋼管または鋼繊維、並びにハイブ リッドで横拘束されたモルタルの実験結果を用いて、式 (6)中のF値とC値を回帰分析で定量化した結果を示す。

(3) ハイブリッド型横拘束モルタルの支圧強度

a) 累加支圧強度(SFB):ハイブリッド型横拘東モルタルの累加支圧強度は、無拘東モルタルの支圧強度式(3)と鋼管または鋼繊維を単独で横拘束に使用したモルタルの支圧強度式(4),式(5)の和として次式で表される。

$$SFB = mFB + st - mFB + sf - mFB = \sum_{i} F + \sum_{i} \Delta_{i} FB$$
 (7)

ここに、添字st-m、sf-m:鋼管または鋼繊維で横拘束されたモルタルと無拘束モルタルの差を意味する。

図-5に、鋼管と鋼繊維を併用したハイブリッド型

横拘束モルタルの累加支圧強度の実験結果と式(6)および式(7)を用いて算定した推定結果との関係を示す。

b) ハイブリッド支圧強度 (HFB): 前報⁵⁾で示した方法と 同様に、上記の式(7)中の横拘束によって生じる支圧 強度の増分(ΣΔ*iFB*)の項のみに係数αを乗じた次の式 (8)を用いることによって、鋼管と鋼繊維の併用によ る支圧強度に対する相乗効果を考慮することとした。

 $HFB=mFB+st-mFB+sf-mFB=\sum iF+\alpha\cdot(\sum \Delta iFB)$ (8) 式(8) 中の係数 α としては、後述の1.16が得られた。

(4) 相乗効果を考慮した支圧強度推定式の適用性

表-5は、鋼管と鋼繊維の併用による相乗効果を考慮 した支圧耐力の推定結果の一覧, また, 図-6(a)~(d) は、ハイブリッド型横拘束モルタルの支圧強度と支圧径 との関係に関する実験値と推定値の比較を試験体種類別 に示したものである。なお,表と図中には累加支圧耐力 と前報5)で提案した式(8)中の係数αを1.41とした場合の 推定値も併示してある。これらの表および図によれば, 鋼管と鋼繊維によるハイブリッド型横拘束モルタルの支 圧強度の実験値(図中の赤の●印)は、鋼管の肉厚およ び鋼繊維の長さに関わらず累加支圧強度(図中の青の破 線)の1.03~1.18倍(平均1.07倍)の値を示しており、 その差は支圧径が小さくなるに従って増大する傾向を示 している。これに対して、式(8)中の係数αを1.16に設定 して鋼管と鋼繊維の併用による相乗効果を考慮すると, 支圧強度の実験値とハイブリッド型横拘束モルタルの支 圧強度の推定値(図中の赤の破線)との比は, 0.99~1.13 (平均1.01) の範囲となり、鋼管と鋼繊維の併用による 相乗効果が認められる。ただし、前報5)で示した帯筋に よる離散的な外的横拘束を受ける場合では、式(8)中の 係数 α として1.41(図-6中の黒の実線)が得られたが、 本研究で取り上げた鋼管と鋼繊維を併用したハイブリッ

T=2.3mm+繊維無混入試験体 (e)鋼管T=2.3mm+繊維Lf=30mm試験体 (f)鋼管T=2.3mm+繊維Lf=60mm試験体 図ー5 鋼管と鋼繊維を併用したハイブリッド型横拘束モルタルの累加支圧強度と支圧径との関係

表-5 鋼管と鋼繊維の併用による 相乗効果を考慮した支圧耐

ガの推足指朱一見										
2.41.	支圧	実験値	支原	E耐力	の推定	値				
シリー ズ名	径B	Pc	sPcc	Pc/	hPcc	Pc/				
ク 油	(mm)	(kN)	(kN)	sPcc	(kN)	hPcc				
	145	1,035	1,013	1.02	1,013	1.02				
HY50-	100	760	738	1.03	770	0.99	_			
T10-S3	75	591	572	1.03	609	0.97				
	50	393	395	0.99	430	0.92	_			
	145	1,112	1,145	0.97	1,145	0.97	_			
HY50-	100	1,077	909	1.18	954	1.13	-			
T10-L3	75	856	744	1.15	798	1.07				
	50	623	549	1.13	601	1.04	_			
	145	1,333	1,317	1.01	1,317	1.01				
HY50-	100	1,116	1,016	1.10	1,064	1.05				
T23-S3	75	846	821	1.03	879	0.96	_			
	50	635	600	1.06	655	0.97	_			
	145	1,505	1,485	1.01	1,485	1.01	_			
HY50-	100	1,361	1,205	1.13	1,266	1.07				
T23-L3	75	1,064	1,003	1.06	1,078	0.99	-			
	50	861	758	1.14	831	1.04	_			
E22-7	ナロア	LLact	E/ /-				-			

[注]Pc: 支圧耐力の実験値, sPcc: 累加支圧耐力, hPcc: 鋼管と鋼繊維の併用による相乗効果を 考慮した支圧耐力の推定値。

図-6 鋼管と鋼繊維の併用による相乗効果を考慮した支圧強度と支圧径 との関係の推定結果

主 C 光网长处用 医

(c) HY50-T23-S3試験体

ド型横拘束モルタルでは、これらの相乗効果は比較的小さく累加支圧強度との差も僅かとなった。これは、前述のように、帯筋によって離散的に横拘束する場合の試験体の破壊は、帯筋の配筋位置と比較して横拘束が相対的に小さい帯筋間の領域に集中するため、破壊の集中する領域にあるモルタルの性質が靭性的なほど最大耐力時の帯筋のひずみ度が増大することによって、支圧強度に及ぼす帯筋による横拘束の影響がより効果的に発揮されるが、試験体側面を一様に横拘束する鋼管の場合は、この効果が帯筋ほどには発揮されないためと考えられる。

4.4 支圧載荷時の荷重ー軸変位関係

表-6は、前掲の図-3の解析モデル中のせん断抵抗成分の非線形バネ剛性(Ks)に関連する式(2)中の実験定数(Tmax, Emax, Aおよびn)を「3.解析方法」に示した逆解析手順に従って算定した結果であり、図-7は、最大荷重および最大荷重時の軸変位に関する実験値と推定値とを比較したものである。これらの表および図によれば、最大荷重および最大荷重時の軸変位に関する実験値と推定値は、比較的良く一致しているのがわかる。また、図-8は、最大耐力時における支圧部側面のせん断応力度(Tmax)と支圧径との関係を示したものであるが、支圧径(B)が小さくなってかぶり部が厚く、かつ鋼管と鋼繊維による外的および内的横拘束が大きいほど、更に鋼管と鋼繊維によるハイブリッド型横拘束が加わるほど、支圧部・かぶり部界面でのせん断滑り抵抗が著しくなるため、Tmaxの値は、増大する傾向を示している。

図-9(a)~(f)は、鋼管または鋼繊維で横拘束された モルタルおよびハイブリッド型横拘束モルタルの荷重ー 軸変位関係に関する実験結果と解析結果との比較を支圧

表一6 逆解析結果一覧

(d) HY50-T23-L3試験体

Mathematical Color Mathema	逆解析結果			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	iPcc ίδες ίδες			
PL50				
PLS0 75 353 0.51 3.02 1,597 0.76 0.51 343 0.97 0.51 1.00 50 216 0.47 3.45 1,441 0.76 0.54 215 0.99 0.45 0.97 145 1,025 1.44 0.48 1,900 1.37 0.33 990 0.97 1.40 0.98 145 1,025 1.44 0.48 1,900 1.37 0.33 990 0.97 1.40 0.98 100 760 1.03 3.59 2,741 0.62 0.87 726 0.96 1.03 1.00 1710 75 543 0.96 4.06 2,725 2.08 0.46 529 0.97 1.19 1.24 150 332 1.16 4.59 2,617 1.35 0.15 320 0.96 1.16 1.00 145 1,393 2.77 0.52 3,217 1.91 0.11 1,374 0.99 3.12 1.13 1750- 100 1,035 2.09 4.51 4,402 1.13 0.99 1,019 0.98 2.55 1.22 1723 75 798 3.37 5.85 4,809 1.35 0.59 800 1.00 3.62 1.07 150 557 7.23 5.89 17,311 7.07 0.37 554 1.00 5.95 0.82 145 844 0.96 0.51 2,458 1.01 0.28 837 0.99 0.96 1.00 150 586 0.81 2.71 2,444 0.86 0.50 596 1.02 0.81 1.00 150 282 0.81 4.02 2,656 1.68 0.56 282 1.00 0.81 1.00 145 1,007 2.22 1.06 14,526 0.11 0.01 1,008 1.00 1.97 0.85 150 925 2.83 4.08 16,291 5.83 0.08 937 1.01 2.69 0.95	1.01 1.00 1.00			
TU50- 100 760 1.03 3.59 2,741 0.62 0.87 726 0.96 1.03 1.00	0.97 0.55 0.99			
TU50-	0.97 0.51 1.00			
TU50- 100 760 1.03 3.59 2,741 0.62 0.87 726 0.96 1.03 1.00 710 75 543 0.96 4.06 2,725 2.08 0.46 529 0.97 1.19 1.24 5.00 1.05 1.05 1.06 1.05 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06	0.99 0.45 0.97			
T10	0.97 1.40 0.98			
TU50- 100 1,035 2.09 4.51 4,402 1.13 0.99 1,019 0.98 2.55 1.22 1.06 1.05 1.00 1.05 0.51 0.51 0.50 0.50 0.50	0.96 1.03 1.00			
TU50-	0.97 1.19 1.24			
TU50- 100 1,035 2.09 4.51 4,402 1.13 0.99 1,019 0.98 2.55 1.22 75 798 3.37 5.85 4,809 1.35 0.59 800 1.00 3.62 1.07 50 557 7.23 5.89 17,311 7.07 0.37 554 1.00 5.95 0.82 145 844 0.96 0.51 2,458 1.01 0.28 837 0.99 0.96 1.00 SF50- 100 586 0.81 2.71 2,444 0.86 0.50 596 1.02 0.81 1.00 58 0.81 2.71 2,444 0.86 0.50 596 1.02 0.81 1.00 53 75 422 0.77 3.32 2,153 1.24 0.57 415 0.98 0.77 1.00 50 282 0.81 4.02 2,656 1.68 0.56 282 1.00 0.81 1.00 145 1,007 2.22 1.06 14,526 0.11 0.01 1,008 1.00 1.97 0.85 1.00 1.95 1.00 925 2.83 4.08 16,291 5.83 0.08 937 1.01 2.69 0.95	0.96 1.16 1.00			
T23 75 798 3.37 5.85 4,809 1.35 0.59 800 1.00 3.62 1.07 50 557 7.23 5.89 17,311 7.07 0.37 554 1.00 5.95 0.82 145 844 0.96 0.51 2,458 1.01 0.28 837 0.99 0.96 1.00 5.95 1.00 5.96 0.81 2.71 2,444 0.86 0.50 5.96 1.02 0.81 1.00 5.96 1.00 5.9	0.99 3.12 1.13			
50 557 7.23 5.89 17,311 7.07 0.37 554 1.00 5.95 0.82 145 844 0.96 0.51 2,458 1.01 0.28 837 0.99 0.96 1.00 SF50- 100 586 0.81 2.71 2,444 0.86 0.50 596 1.02 0.81 1.00 S3 75 422 0.77 3.32 2,153 1.24 0.57 415 0.98 0.77 1.00 50 282 0.81 4.02 2,656 1.68 0.56 282 1.00 0.81 1.00 8F50- 145 1,007 2.22 1.06 14,526 0.11 0.01 1,008 1.00 1.97 0.88 8F50- 100 925 2.83 4.08 16,291 5.83 0.08 937 1.01 2.69 0.93	0.98 2.55 1.22			
SF50- SF50- 100 145 50 844 20 0.96 20 0.51 2.71 2.458 2.444 1.01 3.66 0.28 3.66 837 5.96 0.99 1.02 0.96 3.10 1.00 3.11 S3 75 422 3.71 0.77 3.32 2.153 2.153 1.24 3.24 0.57 3.25 415 3.66 0.98 3.67 0.77 3.00 1.00 3.10 50 282 3.10 0.81 3.22 4.02 3.656 1.68 3.66 0.56 3.62 282 3.00 1.00 3.10 0.81 3.00 1.00 3.00 SF50- 100 925 3.23 2.83 4.08 16,291 3.63 5.83 3.00 0.08 3.71 937 3.10 1.01 3.69 0.95 3.69	1.00 3.62 1.07			
SF50- S3 100 586 0.81 2.71 2.444 0.86 0.50 596 1.02 0.81 1.00 S3 75 422 0.77 3.32 2,153 1.24 0.57 415 0.98 0.77 1.00 50 282 0.81 4.02 2,656 1.68 0.56 282 1.00 0.81 1.00 145 1,007 2.22 1.06 14,526 0.11 0.01 1,008 1.00 1.97 0.89 SF50- 100 925 2.83 4.08 16,291 5.83 0.08 937 1.01 2.69 0.95	1.00 5.95 0.82			
S3 75 422 0.77 3.32 2.153 1.24 0.57 415 0.98 0.77 1.00 50 282 0.81 4.02 2.656 1.68 0.56 282 1.00 0.81 1.00 145 1,007 2.22 1.06 14,526 0.11 0.01 1,008 1.00 1.97 0.89 SF50- 100 925 2.83 4.08 16,291 5.83 0.08 937 1.01 2.69 0.95	0.99 0.96 1.00			
50 282 0.81 4.02 2,656 1.68 0.56 282 1.00 0.81 1.00 145 1,007 2.22 1.06 14,526 0.11 0.01 1,008 1.00 1.97 0.89 SF50- 100 925 2.83 4.08 16,291 5.83 0.08 937 1.01 2.69 0.95	1.02 0.81 1.00			
SF50- 100 925 2.83 4.08 16,291 5.83 0.08 937 1.01 2.69 0.95	0.98 0.77 1.00			
SF50- 100 925 2.83 4.08 16,291 5.83 0.08 937 1.01 2.69 0.95	1.00 0.81 1.00			
	1.00 1.97 0.89			
1.2 75 707 2.21 5.12 5.622 2.40 0.25 704 1.00 2.11 0.00	1.01 2.69 0.95			
L3 75 707 2.31 5.12 5,633 2.48 0.35 704 1.00 2.14 0.93	1.00 2.14 0.93			
50 417 2.11 5.36 5,577 3.71 0.07 417 1.00 2.11 1.00	1.00 2.11 1.00			
145 1,035 1.47 0.49 2,683 1.35 0.33 1,000 0.97 1.41 0.96	0.97 1.41 0.96			
HY50- 100 760 1.25 3.33 2,823 0.78 0.95 735 0.97 1.25 1.00	0.97 1.25 1.00			
T10-S3 75 591 1.34 4.69 3,047 1.12 0.01 575 0.97 1.29 0.96	0.97 1.29 0.96			
50 393 2.01 5.08 3,754 1.77 0.52 388 0.99 2.32 1.15	0.99 2.32 1.15			
145 1,112 1.86 0.92 19,600 5.73 0.02 1,116 1.00 1.96 1.05	1.00 1.96 1.05			
HY50- 100 1,077 2.94 5.27 8,252 2.73 0.30 1,089 1.01 2.54 0.86	1.01 2.54 0.86			
T10-L3 75 856 4.03 6.34 7,479 3.07 0.35 848 0.99 3.59 0.89	0.99 3.59 0.89			
50 623 4.66 8.22 24,943 0.44 0.36 614 0.99 4.76 1.02	0.99 4.76 1.02			
145 1,333 2.77 0.72 4,317 0.60 0.71 1,322 0.99 2.99 1.08	0.99 2.99 1.08			
HY50- 100 1,116 3.58 4.64 5,018 1.11 0.31 1,103 0.99 3.20 0.89	0.99 3.20 0.89			
T23-S3 75 846 3.20 6.15 5,250 1.54 0.89 853 1.01 3.66 1.14	1.01 3.66 1.14			
50 635 6.96 7.34 33,061 9.12 0.08 621 0.98 5.90 0.85	0.98 5.90 0.85			
145 1,505 4.03 0.85 3,380 0.32 1.00 1,510 1.00 3.57 0.89	1.00 3.57 0.89			
HY50- 100 1,361 4.69 5.76 7,854 2.25 0.15 1,323 0.97 3.95 0.84	0.97 3.95 0.84			
	0.98 4.86 1.12			
	0.94 7.34 1.00			

[注] Pc および δc :最大荷重および最大荷重時の軸変位の実験値, iPcc および $i\delta cc$:逆解析による最大荷重および最大荷重時の軸変位の推定値。

径 (B) 別に示した例である。図によれば、実験結果と解析結果とは、全体的に良く一致しており、支圧荷重を受けるハイブリッド型横拘束モルタルの荷重ー軸変位関係は、支圧部に対する鋼管、鋼繊維およびかぶり部の横拘束による多軸効果成分と支圧部・かぶり部界面で生じ

るせん断抵抗成分とから構成される前掲の**図-3**に示した解析モデルによって合理的に評価できるといえる。

5. 結 論

本研究の結果は、およそ次のようにまとめられる。

- 1)鋼管と鋼繊維を併用したハイブリッド型横拘束モルタルの支圧強度は、支圧径が小さくなると鋼管と鋼繊維の併用による相乗効果が若干期待できるが、離散的に横拘束する帯筋と鋼繊維を併用した場合ほどの相乗効果は期待できず、その効果は鋼管と鋼繊維による累加支圧強度に対して約16%増程度である。
- 2) 支圧荷重を受けるハイブリッド型横拘束モルタルの 荷重一軸変位関係は、支圧部に対する鋼管、鋼繊維 およびかぶり部の横拘束による多軸効果成分と支圧 部・かぶり部界面で生じるせん断抵抗成分とからな る非線形解析モデルによって説明でき、最大耐力時 の支圧部側面のせん断応力度は、支圧径と試験体直 径の比が小さく、鋼管と鋼繊維による外的、内的お よびハイブリッド型横拘束が大きいほど増大する。

謝辞

本実験の実施およびデータ整理に際して多大のご助力

を得た愛知工業大学学部学生の岩尾鷹飛君,要虎助君, 小坂賢輝君,東谷和也君,深井聡真君および山田茂志君, 並びに技術員の近藤信彦氏に対して謝意を表します。

参考文献

- 1) 例えば岡田清, 六車熈編集: 改訂新版コンクリート 工学ハンドブック, pp.381-383, 1985.6
- 2) 小野晃,関俊力,瀬古繁喜,山田和夫:コンクリートの支圧特性に及ぼす横拘束形式の影響に関する研究,コンクリート工学年次論文集,Vol.33, No.1,pp.401-406,2011.7
- 3) 小野晃, 関俊力, 山田和夫: 支圧荷重を受けるコンファインドコンクリートの変形特性に関する解析的研究, コンクリート工学年次論文集, Vol.35, No.1, pp.319-324, 2013.7
- 4) 関俊力,瀬古繁喜,山田和夫:鋼繊維によって内的 拘束を受けるコンファインドモルタルの支圧特性に 関する基礎的研究,コンクリート工学年次論文集, Vol.38, No.1, pp.453-458, 2016.7
- 5) 髙橋拓也, 関俊力, 瀬古繁喜, 山田和夫:帯筋と鋼 繊維を併用したハイブリッド型横拘束モルタル支圧 特性に関する基礎的研究, コンクリート工学年次論 文集, Vol.42, No.1, pp.221-226, 2020.7
- Bazant, Z.P. and Shieh, C.L.: Endochronic Model for Non-linear Triaxial Behavior of Concrete, Nuclear Eng. and Design, Vol.47, pp.305-315, 1978