論文 収縮ひずみ低減対策が再生骨材を使用した高流動高靱性コンクリート 製RC梁のせん断耐力に及ぼす影響

安西 拓巳^{*1}·渡部 憲^{*2}

要旨:本研究では、単位膨張材量の相違する高流動高靭性コンクリート製RC梁試験体の載荷試験および同 試験を対象とした非線形有限要素法解析を実施し、膨張材が再生骨材を使用した高流動高靭性コンクリート 製RC梁試験体のせん断耐力に及ぼす影響について検討した。その結果、水結合材比を50%とした再生骨材を 使用した高流動高靭性コンクリート製RC梁試験体の最大荷重は単位膨張材量の増加に伴い上昇し、膨張材 不使用とした場合と比較して、単位膨張材量を40kg/m³とした場合で11.9%、単位膨張材量を80kg/m³とした 場合で19.0%上昇する等の知見が得られた。

キーワード:再生骨材,高靱性コンクリート,高流動,収縮ひずみ, RC梁, FEM

1. はじめに

これまでに、既存の繊維補強コンクリートをはるかに 上回る性能を有する高靱性セメント複合材料(以下, DFRCCと略記)が開発されている¹⁾。DFRCCとは、セメ ント系材料を繊維で補強した複合材料で、曲げ応力下に おいて複数ひび割れ特性を示し、曲げ、引張、圧縮破壊 時の靱性が大幅に向上した材料である¹⁾。しかし、実際 にDFRCCを使用した施工例は報告されているものの²⁾、 その数は未だに少ないのが現状である。その理由とし て、施工性の問題や、他の材料と比較してコストが高 い、マトリックスとして主にモルタルやセメントペース トを使用しているため、一般的なコンクリートと比較し て水和熱や乾燥収縮による影響が大きい等の問題が挙げ られる。今後、DFRCCの利用を推進するためには、既存 の材料の改良を含む新しい材料の開発が必要と考える。

ところで現在,生産活動を実施するにあたり,地球環 境問題に対する取り組みは重要な課題である。コンク リートの分野においても,再生骨材コンクリートの研究 が活発に実施されている^{例えば,3)}。今後,コンクリートの リサイクルを更に積極的に推し進めるためにも,再生骨 材の新たな有効利用技術を開発しておく必要がある。

以上のような背景から、DFRCCの流動性の改善,収縮ひずみの低減および再生骨材の用途拡大を目指して、 筆者らは、混和材としてフライアッシュおよび膨張材、 骨材として再生骨材を使用した高流動高靭性コンクリート(以下,R-HFDFRCと略記)について検討を行っている^{例えば、4)}。既報⁴⁾では、乾燥材齢56日までのR-HFDFRC の乾燥収縮特性等について報告した。

このような材料を鉄筋コンクリート(以下, RCと略記) 構造物に適用しようとする場合, R-HFDFRC製RC部材 のせん断耐力を適切に評価できるせん断耐力算定式につ いて検討を行っておくことが重要である。そのために は、圧縮強度、引張鉄筋比、せん断補強筋比、せん断ス パン比および繊維の補強効果によって考慮可能となるR-HFDFRCの引張強度(せん断耐力向上に寄与)等を検討項 目とした、R-HFDFRC製RC部材の載荷試験を行い、 データを蓄積する必要がある。同時に、解析的手法を用 いて、内部応力状態等の実験では得られない情報を得る ことにより、R-HFDFRC製RC部材のせん断耐力発現機 構についても検討しておく必要がある。

以上より、本研究では、既報⁴⁾に引き続き、R-HFDFRCの乾燥材齢1年までの乾燥収縮特性について検 討を行った。また、膨張材量の相違がR-HFDFRC製RC 梁のせん断耐力に及ぼす影響を検討するため、膨張材量 の異なるR-HFDFRC製RC梁試験体の載荷試験を行っ た。同時に、1軸圧縮試験、3等分点曲げ試験等の材料試 験を行い、R-HFDFRCの材料構成則を構築し、さらに、 これらの材料構成則を有限要素法(以下、FEMと略記)解 析汎用コードに導入し、R-HFDFRC製RC梁試験体の塑 性変形挙動について解析的に検討を行った。

2. R-HFDFRCの使用材料および配(調)合の概略

(1) 使用材料

使用した再生骨材の物性一覧を表-1に示す。なお, 表中のR1は既報⁴⁾に,R2は,後述,4章で比較対象とし て用いる既報⁵⁾に使用した再生骨材である。再生骨材の 中目と細目の混合割合(質量比)は4:6である。セメントは 普通ポルトランドセメント(密度:3.16g/cm³)を使用し, 繊維はPVA繊維(V,径:0.2mm,長さ:18mm,弾性係 数:27kN/mm²,引張強度:975N/mm²)および鋼繊維(S, 径:0.55mm,長さ:30mm,弾性係数:210kN/mm²,引張 強度:1145N/mm²)を使用した。混和材料は高性能AE減 水剤,分離低減剤,フライアッシュII種(密度:2.28~ 2.30g/cm³),膨張材(EX)および収縮低減剤(SRA)を使用し

^{*1} 東海大学大学院 工学研究科建築土木工学専攻 (学生会員)

^{*2} 東海大学 工学部建築学科教授 博士(工学) (正会員)

た。EXはコンクリートに一般的に使用されている⁶⁰石灰 系(LB,密度:3.14g/cm³)およびカルシウム・サルフォ・ アルミネート系(CSA,密度:2.93g/cm³)の2種類を,単独 または混合使用した。SRAはポリオキシエチレンアルキ ルエーテル系(密度:1.01g/cm³)を使用した。

(2) 配(調)合の概略

本研究および既報^{4),5)}におけるR-HFDFRCの配(調)合の 概略を表-2に示す。R-HFDFRCは水結合材比(W/B)を40 および50%,細骨材率を85%,目標スランプフローを 65cmとした。繊維はVとSを混合使用し、繊維体積混入 率を3%,VとSの繊維体積混合比(V:S)を7:3とした。フ ライアッシュのセメント置換率(EXを使用した場合はEX 量を加える)は20%とした。EXは単位量で使用し、単位 EX量を0,40および80kg/m³,EX混合比(LB:CSA)を 10:0,0:10および5:5とした。SRAは水置換で使用し、使 用量を結合材質量に対して0または2%とした。

3. R-HFDFRCの乾燥収縮特性

既報⁴)に引き続き,**表**−2に示すR-HFDFRCの乾燥収縮 試験を行った(表中の○印)。なお,再生骨材は**表**−1中 のR1を使用した。

3.1 実験概要

乾燥収縮試験は、以下に示す手法⁴により行った。試 験体は100×100×400mmの角柱試験体とし、各要因2体製 作した。計測項目は、試験体内部の中央に設置した検長 100mmの埋込み型ひずみゲージによる試験体長手方向 のひずみおよび熱電対による試験体温度とした。型枠の 内側と試験体との摩擦抵抗低減のため、型枠の内側には テフロンシート(厚さ:0.1mm)を2枚重ねて敷設し、その 間にシリコンオイルを塗布した。試験体は打込み後2日 (湿布養生)で脱型した。その後、標準養生とし、材齢7 日で恒温恒湿室内(20℃, 60%RH)での空中養生とした。 各計測データはデータロガーを使用して取り込んだ。

3.2 乾燥収縮試験結果

乾燥収縮試験により得られたR-HFDFRCの各乾燥材齢 における乾燥収縮ひずみの一覧を表-3に、乾燥収縮ひ ずみの経時変化を図-1に示す。なお、乾燥収縮ひずみ は、乾燥開始時を初期値としたひずみである。

表-3および図-1によれば、乾燥材齢半年(182日)に おけるR-HFDFRCの乾燥収縮ひずみは、R-EX0と比較し て、EXを単独使用することで545~676µ(17.4~21.6%)、 EXおよびSRAを同時使用することで1322~1445µ(42.3~ 46.2%)低減できることがわかった。また、乾燥材齢1年 (365日)におけるR-HFDFRCの乾燥収縮ひずみは、R-EX0 と比較して、EXを単独使用することで527~651µ(15.7~ 19.4%)、EXおよびSRAを同時使用することで1389~ 1512µ(41.3~45.0%)低減できることがわかった。なお、

表-1	再生骨材の物性	と一覧
-----	---------	-----

骨材種類			最大寸法 (mm)	表乾密度 (g/cm ³)	絶乾密度 (g/cm ³)	吸水率 (%)	粗粒率	
R1 ⁴⁾	粗骨材		10	2.53	2.44	3.68	6.02	
	細骨材	中目	2.5	2.55	2.46	3.75	2.34	
		細目	0.6	2.53	2.43	4.43	1.17	
R2 ⁵⁾	粗骨材		10	2.59	2.50	3.48	6.03	
	細骨材	中目	2.5	2.60	2.53	2.70	2.09	
		細目	0.6	2.58	2.50	3.12	1.12	
R3	粗骨材		10	2.54	2.45	3.71	5.89	
	細骨材	中目	2.5	2.55	2.46	3.73	2.35	
		細目	0.6	2.55	2.44	4.34	1.19	

表-2 R-HFDFRCの配(調)合の概略^{4),5)}

- X L			11002			0140	, ""			
試驗体名	使用骨材	水結 合材 比 W/B	細材合比 S/B	細骨 材率 s/a	繊 体 混 率 V _f	単位 膨 材 EX (kg	膨張 材 合比 (LB	収低剤用(Bwt.)	乾燥 収縮 試験	
		()	0/	(10.	L. /0/	/m ⁻)	·(3A)	~ 70)		
R-EX0(W/B=40%)		40	40					0	-	
R-EX0						0	0:0	v	0	
R-EX0-SRA2	-	50	65					2	0	
R-EX40-10:0	円						40	10.0		-
R-EX80-10:0	生。			65 ⁸⁵	3		10.0	0	0	
R-EX80-0:10	有材					80	0:10		0	
R-EX80-5:5							5:5		0	
R-EX80-10:0-SRA2							10:0	9	0	
R-EX80-0:10-SRA2							0:10	2	0	

表-3 各乾燥材齢における乾燥収縮ひずみ一覧

計除仕力	各乾燥材齢における乾燥収縮ひずみ(μ)						
武职14-泊	28日 ⁴⁾	56日 ⁴⁾	91日	182日	365日		
R-EX0	-1521	-2266	-2706	-3129	-3364		
R-EX0-SRA2	-969	-1500	-1824	-2105	-2258		
R-EX80-10:0	-1150	-1679	-2021	-2453	-2717		
R-EX80-0:10	-1385	-1883	-2187	-2584	-2838		
R-EX80-5:5	-1264	-1768	-2072	-2455	-2713		
R-EX80-10:0-SRA2	-795	-1191	-1445	-1684	-1852		

R-EX0と比較して最も乾燥収縮ひずみを低減できたのは, EX(LB)およびSRAを同時使用したR-EX80-10:0-SRA2であった。

4. R-HFDFRC製RC梁試験体の載荷試験

本研究では、表-4に示す、R-HFDFRCの材料試験、 R-HFDFRC製RC梁試験体の載荷試験および同試験を対象とした3次元非線形FEM解析を行った。なお、表中の *印の試験体は比較対象であり、本研究と同様の配筋および載荷条件とした、R-HFDFRC製RC梁試験体の載荷 試験および解析から得られた既報の結果⁵⁾である。

4.1 実験概要

(1) 材料試験

本研究では、R-HFDFRC製RC梁試験体の強度管理,

図-3 RC梁載荷試験

並びに材料構成則を特徴づける破壊力学パラメータを抽 出するため, R-HFDFRCの1軸圧縮試験,3等分点曲げ試 験,引抜き試験および鉄筋の引張試験を実施した。

試験体は、1軸圧縮試験では100φ×200mmの円柱試験 体、3等分点曲げ試験では100×100×400mmの角柱試験 体、引抜き試験ではD-16(SD490)の鉄筋を挿入した 100×100×100mmの角柱試験体で、鉄筋の引張試験ではD -16(SD490)、平行部長さを公称直径の10倍以上とした棒 状試験体とした。試験体本数は、1軸圧縮試験および3等 分点曲げ試験では6体、引抜き試験および鉄筋の引張試 験では3体とした。

1軸圧縮試験は試験方法を文献⁷⁾に準じて行い,計測 項目を荷重,コンプレッソメータによる試験体中央部の 縦・横ひずみおよび高感度変位計による載荷盤間変位と した。なお,圧縮破壊エネルギー(G_{Fe})は,文献^{7),8)}に示 す手法により算出した(文献^{7),8)}中の,塑性変形が3.0mm までの値)。

3等分点曲げ試験は試験方法を文献⁹⁾に準じて行い, 計測項目を荷重,高感度変位計によるスパン中央部の変 位およびパイ型変位計による曲率とした。引張強度(F_{tb}) および引張終局ひずみ($\epsilon_{tu,b}$)は文献⁹付属書(参考)を基 に,文献¹⁰に示す手法により算出した。

引抜き試験は試験方法を文献¹¹⁾に準じて行い,計測項 目を荷重および鉄筋のすべり量とした。

鉄筋の引張試験は試験方法を文献¹²に準じて行い,計 測項目を荷重,試験体中央部の縦・横ひずみおよび伸び 量とした。

各種材料試験の計測データはデータロガーを使用して 取り込んだ。

各種材料試験により得られたR-HFDFRCおよび鉄筋の 材料特性一覧を表-4および表-5に示す。

なお,R-HFDFRCの膨張収縮特性を確認するため,自 由膨張収縮試験を実施した。試験体および計測項目は, 前掲,3.1に準じて行い,養生方法は,他の材料試験と 同様とした。

(2) RC梁載荷試験

R-HFDFRC製RC梁試験体の概要を図-2に,載荷試験 の概要を図-3に示す。R-HFDFRC製RC梁試験体は文 献^{13),14)}を参考にして,主筋をD-16(SD490),引張鉄筋比 を5.88%とした,梁せい1800mm×梁幅100mm×梁長さ 1500mmの試験体で,支点間距離を1300mm,せん断ス パン長を450mm,載荷点間距離を400mmとし,主筋を 試験体両端の定着鋼板(厚さ:6mm)に溶接した。載荷は 1000kN万能試験機を使用して行い,計測項目を荷重, 高感度変位計によるスパン中央部の変位およびひずみ ゲージによる主筋のひずみとした。また,養生期間中 に,ひずみゲージによる主筋のひずみ(図-2中の位置A) および試験体内部に設置した検長100mmの埋込み型ひ ずみゲージによるR-HFDFRCのひずみ(図-2中の位置B) を計測した。各計測データはデータロガーを使用して取 り込んだ。

(3) 試験体の養生

R-HFDFRCの材料試験用試験体およびR-HFDFRC製 RC梁試験体は、打込み後2日で脱型し、積算温度が 1680°DD(材齢56日に相当)となるまで、養生室内での湿 布養生とした。

4.2 解析概要

(1) 試験体のモデル化および解析方法

R-HFDFRC製RC梁試験体の要素分割を図ー4に示す。 **R-HFDFRC**製RC梁試験体はR-HFDFRCを25×30×30およ び40mm,定着鋼板を6×30×30および40mm,支点・載荷 点鋼板を25×6×30および40mmの要素で分割した。各要 素は8節点アイソパラメトリックソリッド要素とし,主 筋は付着すべり埋め込み鉄筋要素とした。

解析方法は,最初に自重を加え,次に図-4中の矢印 位置に強制変位を漸増的に加えることとした。なお,解 析コードは汎用構造解析プログラムDIANA10.1¹⁵⁾を使用 し、非線形反復計算法はNewton-Raphson法とした。

(2) 材料構成則

R-HFDFRCの破壊現象を扱うため、圧縮側および引張 側に全ひずみに基づく構成則を適用し、ひび割れは、ひ び割れ回転を考慮した分布ひび割れモデルとした。

R-HFDFRCの圧縮側の応力-ひずみ関係は図-5に示 すParabolicで表し、応力下降域で囲まれる面積はG_{Fc}/要 素代表長さ(L_e)とした。ヤング係数(E_e), 圧縮強度(F_e)お よびG_{Fc}は表-5の材料試験結果とし、L_cは要素体積と等 価な体積を持つ球の直径とした。また、Vecchio¹⁶らが 提案している横拘束による圧縮強度の増大, Collins¹⁷⁾ら が提案しているひび割れたコンクリートの圧縮強度低減 を考慮した。

R-HFDFRCの引張側の応力-ひずみ関係は図-6に示 すように、3等分点曲げ試験結果(前掲、表-5)から導き 出される,筆者らの一人¹⁰⁾が提案している多直線モデル を適用した。

R-HFDFRCと梁主筋の間には、引抜き試験結果(前 掲,表-5)より構築した多直線モデルを適用した。本付

着モデルの各点における付着応力は実験結果の平均値と した。また、各点のすべりは、実験により得られた付着 応力-すべり関係の形状を考慮し、第1点を付着強度時 すべり(S_u)の1/20, 第2点をS_u, 第3点をS_uの2.5倍, 第4点 を第3点の7.5倍とした。

鉄筋の降伏基準はVon Mises基準とした。鉄筋の降伏 強度およびヤング係数は表-4に従い、応力-ひずみ関 係をbi-linearモデルとした。なお、第2勾配の剛性はヤン グ係数の1/100とした。

4.3 結果と考察

写真-1に、載荷試験後のRC梁試験体の破壊状況の一 例(R-HFC-50-EX80)を示す。また, 表-6に, R-HFDFRC 製RC梁試験体の載荷試験および解析により得られた最 大荷重の一覧を、図-7に、荷重-変位関係を示す。な お,図-7中の各結果における印は最大荷重時を示して いる。写真-1のR-HFC-50-EX80の結果と同様に,いず れの載荷試験結果においても主筋が降伏せずに最大荷重 を迎え、せん断破壊したことを確認している。また、い ずれの解析結果においても主筋が降伏せずに最大荷重を 迎えたことを確認しており、載荷試験時の破壊モードを 再現できている。

まず,表-6および図-7の載荷試験結果によれば,R-HFDFRC製RC梁試験体の最大荷重は単位EX量の増加に 伴い上昇しており、R-HFC-50*と比較して、R-HFC-50-EX40で11.9%, R-HFC-50-EX80で19.0%上昇することが わかった。また, R-HFC-50-EX80の最大荷重(124kN) は, 既報⁵⁾のR-HFC-40*(W/B=40%, EX不使用)の最大荷 重(121kN)と同程度以上まで上昇することがわかった。

次に,表-6および図-7の解析結果によれば,単位 EX量の相違に係らず,解析により得られた最大荷重> 載荷試験により得られた最大荷重となっている。解析で は, R-HFC-50-EX40の最大荷重はR-HFC-50*と同値とな り, R-HFC-50-EX80の最大荷重はR-HFC-50*と比較して 若干上昇(2.51%)する傾向が確認できたが、載荷試験時 の上昇(19.0%)と比較して小さい。

RC部材のせん断耐力はコンクリートの体積変化に影 響を受けて変化し、EXを使用したコンクリートを用い て収縮を低減し、さらにはケミカルプレストレスを導入 することによって改善・向上することが知られてい

る^{例えば、の}。EXの使用によるプレストレスが、今回の載 荷試験結果に影響を及ぼしたものと考えられる。

4.4 パラメータ解析

本研究と同様の配筋および載荷条件とした, せん断破 壊する各種DFRCC製RC梁試験体の載荷試験および解析 により得られた既報の結果^{5,18)}を確認した。その結果, 解析により得られた最大荷重は, 載荷試験により得られ た最大荷重と比較して平均で13.3%大きくなることがわ かった。そこで,本研究では,解析により得られる最大 荷重は載荷試験により得られる最大荷重と比較して 13.3%大きくなると仮定し,解析時の目標最大荷重をR-HFC-50-EX40で133kN, R-HFC-50-EX80で141kNと設定 する。以下,前掲, **表**-5に示す材料特性を基本とし, R-HFDFRC製RC梁試験体のパラメータ解析を行った。

(1) プレストレスによる影響の検証

ここでは、膨張ひずみを初期ひずみとして導入したパ ラメータ解析を行った。解析方法は、最初に図-4中の R-HFDFRC要素に初期ひずみ(後掲、図-9中の自由膨張 収縮試験体の膨張ひずみを参考に設定)を与え、以降は 前掲、4.2と同様とした。なお、R-HFDFRCのクリープ や自己収縮等は考慮していない。図-8に、パラメータ 解析により得られた最大荷重-膨張ひずみ関係を示す。

図-8によれば、最大荷重は膨張ひずみの増加に伴い 上昇し、目標最大荷重の得られる膨張ひずみはR-HFC-50-EX40で149µ, R-HFC-50-EX80で393µとなった。

ここで,養生期間中に計測したR-HFDFRC製RC梁試 験体の主筋のひずみ(図-2中の位置A,主筋6本の平均 値),R-HFDFRCの図-2中の位置Bでのひずみおよび自 由膨張収縮試験体のひずみの経時変化を図-9に示す。

図-9によれば、主筋の引張ひずみは単位EX量の相違 に係らず、載荷試験材齢時にはほぼ0µとなっている。 なお、主筋のひずみは載荷試験材齢時から前1日の平均 で、R-HFC-50-EX40で圧縮側に7µ、R-HFC-50-EX80で圧 縮側に3µであった。これは若材齢クリープによる応力 緩和や自己収縮の影響等であると考えているが、主筋の 拘束に伴うR-HFDFRCへのプレストレスは、主筋のひず みから判断すると載荷試験材齢時には小さかった。

次に、R-HFDFRCのひずみに注目すると、自由膨張収 縮試験体の膨張ひずみは単位EX量の相違に係らず載荷 試験材齢時においても高い値を示している。一方、 図-2中の位置Bでのひずみは材齢1日程度で膨張側に最 大となり、その後、材齢の経過に伴い減少し、載荷試験 材齢時にはR-HFC-50-EX40でほぼ0μ、R-HFC-50-EX80で 収縮側に転じている。このことから、RC梁試験体内部 のR-HFDFRCの材料特性は、硬化過程において膨張が主 筋により拘束されたことによる組織の緻密化で、前掲、 表-5に示す材料特性から変化している可能性がある。

文献¹⁹⁾によれば,EXを使用したコンクリートのF_cはEX を使用していない場合と比較して低下するが,膨張を一 軸拘束することで同程度となり,三軸拘束することで増 加することが示されている。

(2) 材料特性の変化による影響の検証

既報^{5),18)}では、各種DFRCC製RC梁試験体の最大荷重 に大きく影響を及ぼしている各種DFRCCの材料特性は F_c および $F_{t,b}$ であることを、パラメータ解析によって示 している。ここでは、前掲、4.2の解析方法を基本と し、 F_c および $F_{t,b}$ を変化させたパラメータ解析を行っ た。図-10に、パラメータ解析により得られた最大荷 重- F_c 、 $F_{t,b}$ 関係を示す。

まず,図-10(a)によれば,F_cを変化させた場合,目 標最大荷重の得られるF_cはR-HFC-50-EX40で46.1N/ mm²,R-HFC-50-EX80で54.6N/mm²となった。なお,R-HFC-50-EX80の目標最大荷重時のF_cである54.6N/mm² は,前掲,表-5に示すR-HFC-40*のF_c(52.9N/mm²)と同 程度となっている。

次に、図-10(b)によれば、 F_{tb} を変化させた場合、目標最大荷重の得られる F_{tb} はR-HFC-50-EX40で2.64N/mm², R-HFC-50-EX80で2.93N/mm²となった。

以上,本研究の範囲において単位EX量の増加に伴うR -HFDFRC製RC梁試験体の最大荷重の上昇は,一因とし て,硬化過程において膨張が主筋により拘束されたこと による梁試験体内部のR-HFDFRCの材料特性の変化によ るものと考えられることが,パラメータ解析等により示 唆された。今後,梁試験体内部のR-HFDFRCの材料特性 の変化について,詳細な検討を行う予定である。

5. まとめ

本研究の範囲において、得られた知見を以下に示す。

- R-HFDFRCの乾燥収縮ひずみは膨張材や収縮低減剤 を単独または同時使用することで、膨張材および収 縮低減剤不使用とした場合と比較して、乾燥材齢半 年で545~1445µ(17.4~46.2%)、乾燥材齢1年で527~ 1512µ(15.7~45.0%)低減できる。
- 2) 水結合材比を50%としたR-HFDFRC製RC梁試験体の 最大荷重は単位膨張材量の増加に伴い上昇し,膨張 材不使用とした場合と比較して,単位膨張材量を 40kg/m³とした場合で11.9%,単位膨張材量を80kg/ m³とした場合で19.0%上昇する。
- 水結合材比を50%,単位膨張材量を80kg/m³としたR-HFDFRC製RC梁試験体の最大荷重(124kN)は,水結 合材比を40%,膨張材不使用とした場合(121kN)と同 程度以上まで上昇する。

謝辞

本研究の一部はJSPS科研費(課題番号:18K04442,代 表者:渡部憲)の助成を受けて行われたものである。

参考文献

- 高靭性セメント複合材料の性能評価と構造利用研究 委員会:高靭性セメント複合材料を知る・作る・使 う,高靭性セメント複合材料の性能評価と構造利用 研究委員会報告書,日本コンクリート工学協会, pp.1-10,37-42,2002.1
- 高強度・高靱性コンクリート利用研究委員会:高強 度・高靱性コンクリート利用研究委員会報告書,日 本コンクリート工学協会,pp.74-85,2009.3
- 日本建築学会:再生骨材を用いるコンクリートの設計・製造・施工指針(案),211pp.,2014.10
- 4) 安西拓巳,渡部憲:再生骨材を使用した高流動高靭 性コンクリートの収縮ひずみ低減,コンクリート工 学年次論文集,Vol.42,No.1,pp.173-178,2020.7
- 5) 白鳥有平,渡部憲:水結合材比の相違する再生骨材 を使用した高流動高靭性コンクリート製RC梁のせん 断耐力に関する基礎的研究,コンクリート工学年次 論文集, Vol.40, No.1, pp.309-314, 2018.6

- 6) 日本建築学会:膨張材・収縮低減剤を使用したコン クリートに関する技術の現状, pp.99-129, 196-235, 2013.7
- 渡部憲,大岡督尚,白都滋,加藤雄介:再生細骨材 を使用した高靭性セメント複合材料の圧縮破壊挙 動,コンクリート工学年次論文集,Vol.28, No.1, pp.485-490, 2006.7
- 渡部憲,大岡督尚,白井伸明,森泉和人:各種コン クリートの圧縮軟化挙動,コンクリート工学年次論 文集, Vol.22, No.2, pp.493-498, 2000.6
- JCI規準:繊維補強セメント複合材料の曲げモーメントー曲率曲線試験方法(JCI-S-003-2007), コンクリート工学協会, pp.1-8, 2007
- 10) 渡部憲,佐藤史康,三浦康彰,渋谷恒太:各種細骨 材を使用した高靭性セメント複合材料の引張軟化挙 動,コンクリート工学年次論文集,Vol.32,No.1, pp.287-292, 2010.7
- 建材試験センター規格:引抜き試験による鉄筋とコンクリートとの付着強さ試験方法(JSTM C 2101), 建材試験センター,2005
- 12) 日本工業規格:金属材料引張試驗方法(JIS Z 2241), 2011
- 13) 永井覚,高稻宜和,閑田徹志,丸田誠:高靱性繊維 補強セメント複合材料を用いた梁部材の曲げせん断 性状 その2 実験結果の考察,日本建築学会学術 講演梗概集(関東),pp.313-314,2001.9
- 14) 日本建築学会関東支部:鉄筋コンクリート構造の設計
 計 学びやすい構造設計,日本建築学会関東支部, pp.275-290,2002.1
- DIANA Foundation Expertise Center for Computational Mechanics: DIANA Finite Element Analysis User's Manual, TNO Building and Construction Research., 2016
- 16) Selby, R. G. and Vecchio, F. J. : Three-dimensional Constitutive Relations for Reinforced Concrete. Tecd. Rep. 93-02. Univ.Toront ,1993
- Vecchio, F. J. and Collins, M. P. : Compression Response of Cracked Reinforced Concrete, ASCE, pp.3590-3610, 1993
- 白鳥有平,渡部憲:再生細骨材を使用した高流動高 靭性セメント複合材料製RC梁のせん断耐力に関す る基礎的研究,コンクリート工学年次論文集, Vol.39, No.1, pp.241-246, 2017.7
- 19) 辻幸和,丸山久一:膨張コンクリートの力学特性に 及ぼす拘束方法の影響に関する基礎研究,第6回コ ンクリート工学年次講演会論文集,pp.341-344, 1984