論文 屋外暴露した加熱改質フライアッシュコンクリートの諸特性

齋藤 隆弘*1·皆川 浩*2·佐藤 貴之*3·東 邦和*4

要旨:加熱改質フライアッシュを混和したコンクリートにて作製した暴露供試体を屋外で暴露し,打込み後 約半年の期間,表面近傍のひずみを測定した。さらに,最長で約3年後に暴露供試体からコア試料を採取し, 各種試験を行った。この結果,暴露後の加熱改質フライアッシュを用いたコンクリートは,加熱改質フライ アッシュを用いない場合と比較して,同程度の収縮量,長期強度および水分浸透抵抗性を有し,中性化の進 行も想定範囲内であること,膨張材との併用により緻密性が向上することが明らかになった。 キーワード:加熱改質フライアッシュ,屋外暴露,乾燥収縮,長期強度,水分浸透性,中性化

1. はじめに

加熱改質フライアッシュ(以下,加熱改質 FA と称す) を用いたコンクリートに関する研究は室内試験において は多数実施されており、そのポゾラン反応による細孔構 造の緻密化により、塩分浸透などのコンクリートの物質 移動抵抗性を大きく改善しうることが明らかになりつつ ある^{例えば1)}。しかしながら、実構造物に加熱改質 FA を適 用した際、室内とは温度、湿度、雨掛りの有無等の環境 条件が異なることから、加熱改質 FA を用いたコンクリ ートの実構造物における物性は構造物と同条件の環境を 一定期間確保して調査する必要があると考えた。

筆者らは、岩手県山田町の2か所の現場施工(以降, 「織笠」と「大沢」とそれぞれ称す)に加熱改質FAを採 用し、打込み後約半年の期間、表面近傍の長さ変化を測 定するとともに、構造物と同一環境に供試体を暴露した。 また、宮城県石巻市(以降,「石巻」と称す)においても 暴露試験を行った。これらの暴露試験に供した供試体か ら直径10 cmのコア試料を採取し、コンクリートの圧縮 強度、水分浸透抵抗性、中性化抵抗性を評価した。

2. 実験概要

2.1 供試体の概要

(1) 使用材料および配合

使用材料の諸元およびコンクリートの示方配合を表-1 および表-2 にそれぞれに示す。表中の織笠と大沢の 配合は同一のプラントにて製造・出荷されたコンクリー トの配合である。この2ケースについては、それぞれ異 なる設計基準強度の実構造物に適用した配合であるため に、水セメント比、膨張材の使用の有無など、配合が大 きく異なる。石巻は、研究のみを目的とし、フライアッ シュ内割とした、実機練りの配合である。

表-1 使用材料とその諸元

記号	使用材料	諸元
С	普通ポルトランド セメント	密度 3.16 g/cm ³
FA	加熱改質 FA	密度 2.03~2.08 g/cm ³ , 強熱減量 0.4~0.7 % 比表面積 3800~4030 cm ² /g
原粉	加熱改質前の FA	密度 1.96 g/cm ³ , 強熱減量 3.52 % 比表面積 3230 cm ² /g
Е	膨張材	石灰系(T社製),密度3.76 g/cm3
s	細骨材	石巻:山砂,砕砂(表乾密度2.57 g/cm ³ ,2.66 g/cm ³) 織笠・大沢:山砂(表乾密度2.66 g/cm ³)
G	粗骨材	砕石, 表乾密度 2.70 g/cm3

⇒n D	種別	W/B	単位量(kg/m³)							スランプ	空気量		
記方		(%)	w	С	FA	原粉	Е	s	G	(cm)	(%)	111 考	
IN	石巻 ベース	54.4	166	305	-	-	-	798	1046				
IF-15	石巻 FA15%	54.5	162	252	45	-	-	793	1045		4.5±1.5	ベース配合(IN)と水結合材比 を統一	
IF-25	石巻 FA25%	54.6	161	221	74	-	-	790	1039	12±1.5			
I 原-25	石巻 原粉 25%	54.5	169	232	-	78		771	1018				
GN	織笠 ベース	60.0	148	247	-	-	-	764	1174	0.15		FAの3割を結合材とみなした 場合の水セメント比を統一	
GF	織笠 FA	60.0	148	235	40	-	-	724	1174	8±1.5			
SNE	大沢 膨張材	45.0	149	311	-	-	20	723	1131			膨張材を結合材とし、FAの4 割を結合材とみなした場合の	
SFE	大沢 膨張材+FA	45.0	149	295	40	-	20	720	1099	8±1.5			
SN	大沢 JIS 配合	45.0	157	349	-	-	-	707	1115			水結合材比を統一	

表-2 コンクリートの示方配合

*1 (株) 奥村組 技術研究所 材料・施工チームリーダー (正会員)

*2 東北大学大学院 工学研究科 土木工学専攻 准教授 博(工) (正会員)

*3 日本製紙(株)技術本部生産部 主席技術調查役

*4 元 (株) 奥村組 博(工) (正会員)

(2) 暴露供試体と暴露試験の概要

暴露供試体と暴露地点および暴露期間の概要を表-3 に、暴露状況を写真-1に示す。各箇所は沿岸部ではあ るものの、内海である。別途で市販の塩害環境評価薄板 モルタルで飛来塩分を測定したところ、石巻:0.068~ 0.116 mg/(dm² day)、織笠:0.066 mg/(dm² day)、大沢:0.024 mg/(dm² day)であった。市販の塩害環境評価薄板モルタル は JIS R 5201のセメント強さ試験に準拠して練り混ぜた モルタル(配合:W/C=50%, S/C=3.0;使用材料:普通ポ ルトランドセメントおよび ISO 標準砂)で作製した厚さ 1 cm のモルタル板よりも多くの塩化物イオンを捕集す る傾向が報告されている²こと、および、既往の研究デ ータ^{例えば 3)}を踏まえると、本研究の暴露地点における測 定結果はかなり低い値である。したがって、本研究の曝 露地点は比較的穏やかな環境であるといえる。

石巻と織笠の供試体については、暴露期間中に表面透 気係数をダブルチャンバー方式で測定した。また、織笠 と大沢には、上記の暴露用供試体とは別に、寸法安定性 を評価するためのひずみ測定用供試体(図-1 参照)を 作製した。暴露用供試体は屋外の雨掛かりのある位置に て暴露したが、ひずみ測定用供試体は雨掛かりを避ける

暴露位置	供試体の 寸法	配合番号	供試体 作製	暴露終了 コア採取	測定時期	測定材齢				
	1000× 1000× 1000 mm	IN			2020年 8月	43.6ヶ月				
宮城県石巻 市日本制紙		IF-15	2016年 12日14	2019年 10月30日						
木材		IF-25	日日12月14日							
		I原-25								
岩手県山田	200×900×	GN	2016年	2019年	2020年	47.2ヶ月				
織笠漁港	900 mm	GF	8月24日	11月20日	8月					
岩毛眉山田	200×900× 900 mm	SN	2018年 11月9日	2019年 11月20日	2020年 8月	20.8ヶ月				
町大沢川		SNE								
入沉水門		SFE								

表-3 暴露試験体と暴露地点の概要

写真-1 供試体の暴露状況

図-1 ひずみ測定用供試体の概要

ために屋根あり壁なしの小屋に暴露した。

(3) 暴露供試体からのコア試料の採取

暴露供試体は仙台市に運搬し、そこで湿式でコア抜き をしてコア試料を即日採取した。コア試料の寸法は、φ 10×20 cm である。コア試料は採取の後、風通しのよい十 分広い室内のコンクリート製土間にプラスチック製パレ ットを敷き、その上に供試体を 10 cm 間隔で立てて並べ て 8 カ月保管して、コア試料の内部の湿度を調整した。 暴露供試体の作製時期、暴露開始時期と回収・コア採取 時期、および各種試験の実施時期を表-3 に示す。また、 試験項目に対するコア試料の割り当てを図-2 に示す。

2.2 試験項目と測定方法

(1)内部ひずみ

図-1 に示すように、ひずみ測定用供試体に設置深さ を変えてコンクリートひずみ計を埋設し、打込み後のコ ンクリートの収縮量を測定した。ひずみ測定用供試体は、 30 cm 角の立方体で、表面6面のうち1面を乾燥面とし、 他の5面はフィルムで覆って乾燥を防止した。ひずみ測 定用供試体は、前述のように雨掛かりを避ける目的で屋 根あり壁なしの小屋に設置した。ひずみは 20 分の間隔 でデータロガーを用い計測した。

図―2 コア供試体の割り当て

(2) 圧縮強度

コア試料の圧縮強度は、JISA1107:2012(コンクリートからのコアの採取方法及び圧縮強度試験方法)に準拠 して測定した。試料数は1ケースにつき3本である。コ ア試料の両端面の仕上げは、JISA1132(コンクリートの 強度試験用供試体の作り方)4.4.2(研磨による場合)に よって実施した。なお、両端面の仕上げ後のコア試料の 高さと直径の比は1.90~1.98であったため、測定値は補 正しなかった。また、1ケースにつき3本のコア試料を 用いたが、測定値に大きなばらつきは認められなかった ため、3本の測定値の平均を圧縮強度の測定結果とした。

(3) 中性化深さ

中性化深さの測定に供したコア試料数は1ケースにつ き1本である。コア試料は万能試験機で割裂した後,そ の割裂面にフェノールフタレイン溶液を噴霧した。さら に,呈色が安定した後に割裂面のデジタル画像を取得し, 同時に撮影した標準尺に基づいて,コンクリート表面か らの中性化深さを測定した。デジタル画像の取得に当た っては,ライン型センサー付きオーバーヘッドスキャナ ーを用い,スキャナーの読み取り面が供試体割裂面と同 位置になるように供試体位置を調整した。深さの測定に 際しては,標準尺の長さで10cmを基準長として1ピク セル当たりの実長を割り出した。

なお,中性化深さの測定点数はコア試料1本につき18 点であり、側面からの中性化の影響を避けるため、コア 試料の側面部から1cmまでの領域は測定対象から除外し た。また、測定位置に粗骨材が存在したときの取り扱い

図-3 内部ひずみの経時変化(織笠:表面から30 mm)

については,JISA1152:2018(コンクリートの中性化深 さの測定方法)の 5.2 Cによって測定した。

(4) 水分浸透速度係数

水分浸透速度係数は,JSCE-G 582 (短期の水掛かりを 受けるコンクリート中の水分浸透速度係数試験方法)に よって測定した。ただし,浸せき面は暴露試験時に暴露 されていたコンクリート表面部分とした。コア試料の側 面はアルミテープと養生テープにてシールした。浸せき 時間は5,24,48時間の3水準である。所定の浸せき時 間が終了したコア試料は直ちに万能試験機で割裂し,そ の割裂面に市販の水漏れ発色検査剤を噴霧した。さらに, 呈色が安定した後に割裂面のデジタル画像を取得し, 2.2(3)と同じ方法で水分浸透深さを測定した。なお,水 分浸透深さの測定点数はコア試料1本につき15~18点 である。コア試料の側面部から1cmまでの領域,および コア試料とシール材の界面から水が浸透したと考えられ た領域は測定対象から除外した。

3. 実験結果

3.1 内部ひずみ

図-3と図-4に織笠のひずみ用供試体の表面から 30 mm および 75 mm における内部ひずみの経時変化をそれ ぞれ示す。図-3より,表面から 30 mm では加熱改質 FA を使用したケースと使用しないケースで各材齢における 内部ひずみの差は少ない。一方,図-4より,表面から 75 mm における内部ひずみは,材齢 120日で加熱改質 FA を混和した GF の方が未混和の GN よりも 100 μ 程度小

さいことがわかる。乾燥の程度が少ないコンクリート内 部におけるポゾラン反応による緻密化が、内部ひずみの 違いに影響している可能性があると推察した。

図-5と図-6に大沢のひずみ用供試体の表面から 30 mm および 75 mm における内部ひずみの経時変化をそれ ぞれ示す。図-5と図-6より,膨張材を混和した SFE と SNE を比較すると、内部ひずみの差は各位置、各材齢で ほとんど差はなく、本研究で使用した石灰系の膨張材を 混和した場合には加熱改質 FA の混和の有無は内部ひず みにほとんど影響しないことがわかる。膨張材を混和し ていない SN と比較すると、膨張材を混和したケースで は各材齢で収縮ひずみが 200 μ 程度低減しており、加熱 改質 FA を混和しても、混和しない場合と同様、膨張材 の効果が得られるといえる。

3.2 コア採取した供試体による試験

(1) 圧縮強度試験

図-7 にコア試料の圧縮強度を示す。石巻および織笠 のケースでは、加熱改質 FA の使用の有無に伴う圧縮強 度の差は少なかった。石巻および織笠のコア試料の圧縮 強度の測定材齢はそれぞれ 43.6 ヶ月と 47.2 ヶ月であっ たことから、長期にわたるポゾラン反応の進行が加熱改 質 FA を使用したケース(IF-15, IF-25, I 原-25)の初期 強度の低下を補完したと推察される。これに対して、大 沢のケースでは、加熱改質 FA および膨張材を混和した SFE において、加熱改質 FA 無混和かつ膨張材混和の SNE や両混和材を混和しない SN と比較して約 1.5 倍、標準 28 日の2 倍近い著しい強度増加が確認された。今回使用 した石灰系膨張材の組成の 70 %以上が CaO であり、膨 張材の水和に伴い大量の Ca(OH)2が生成され、コンクリ ート中の Ca(OH)2 量は増加する。SFE の圧縮強度が SNE や SN と比較して増加し、材齢 28 日から著しく強度が増 進したのは、この Ca(OH)2の増加によりポゾラン反応に 伴う加熱改質 FA の反応量が増加したためと考察した。 これは、フライアッシュの反応率が Ca(OH)2の生成量に 影響をうけるとされる既往の知見 4からも適切と考える。

(2) 中性化深さ

写真-2 および図-8 にコア試料の中性化深さの測定 状況と測定結果をそれぞれ示す。石巻および織笠のケー スでは、加熱改質 FA の混和量の増加に伴い中性化深さ が増加した。これは既往の知見 ⁵⁾と同じように、ポゾラ ン反応によりコンクリート中に生成した Ca(OH)2が消費 された影響と考えられる。これに対して、大沢における 加熱改質 FA および膨張材を混和した SFE では、中性化 の進行が 2 mm 程度と極めて緩慢であった。この理由と

図-8 中性化深さ試験結果

写真-2 中性化深さの測定状況(写真上方が暴露時の露出面)

しては、石灰系膨張材の水和により、CO₂ と反応する Ca(OH)₂量が増加した影響が考えられたが、加熱改質 FA 無混和かつ膨張材を混和した SNE の中性化深さは両混 和材を混和しない SN と大差ないことから、この影響は 少ないと考えられる。SFE の圧縮強度の増大の理由と同 様に、Ca(OH)₂量の増加に伴いポゾラン反応した加熱改 質 FA の量が増加し、細孔構造が緻密化して中性化深さ が SFE では抑制されたと推測される。

(3) 水分浸透深さと水分浸透速度係数

図-9にコア試料をJSCE-G582に準拠して水に浸せき させた時の水分浸透深さを示す。石巻および織笠のケー スでは、加熱改質 FA の混和率の増加に伴い浸せき開始 から5時間までの水分浸透深さは深くなり、それ以降の 水分浸透深さの伸びは加熱改質 FA の混和率の増加に伴 い低下する傾向が得られた。特に、加熱改質 FA を25% 置換した IF-25 では、この傾向は顕著であった。これは 表層部 20 mm 程度までは加熱改質 FA の混和が水密性の 低下をもたらすのに対し、それ以深では逆に加熱改質 FA の混和が水密性の向上をもたらすことを示すものである。 これに対して、大沢のケースでは、加熱改質 FA および 膨張材を混和した SFE は、膨張材のみを混和した SNE よ りも浸せき開始からすべての時間で水分浸透深さが低下 しており、石巻や織笠のケースとは傾向が異なった。さ らに、SNE は膨張材非混和の SN よりも水分浸透深さが 増大していた。これらの理由として、石灰系膨張材の混 和による Ca(OH)2の生成により、圧縮強度の結果で説明 したように加熱改質 FA と石灰系膨張材を併用した SFE では細孔構造が緻密化しているのに対し、加熱改質 FA 無混和で膨張材を混和した SNE では細孔構造が粗にな って表層部の水密性が低下していることが推察された。

図-10にJSCE-G582に準拠して求めたコア試料の水 分浸透速度係数を示す。水分浸透速度係数は浸せき 5, 24,48時間での水分浸透深さを線形回帰したときの傾 きとして算出される。石巻のフライアッシュ置換率25% のケース(IF-25,I原-25)では、5時間の水分浸透深さ が深いものの、5時間以降の水分浸透深さがさほど伸展 しなかったため、水分浸透速度係数は他のケースと比較 してかなり低い傾向となった。

なお、これらの結果より、実環境に暴露した面に対し て JSCE-G 582 を適用して求めた水分浸透速度係数が小 さくても、短時間(例えば、5時間)の浸せき期間によ る水分浸透深さに基づいて水分浸透抵抗性を評価する と良とはならないケースが存在することを示しており、 これは表面からの深さにより水分浸透抵抗性が異なる 場合があるためと考えられる。したがって、実環境に暴 露された面の水分浸透抵抗性とそれに基づく部材の鋼 材腐食に関する耐久性を評価する際には、水分浸透深さ と当該部材のかぶりの深さの関係を考慮する必要があ

ると考えられる。

4. 中性化深さおよび水分浸透係数結果の比較

図-11に水分浸透速度と中性化深さの関係を示す。こ こで水分浸透速度とは、水分浸透深さを浸せき時間で除 したものである。図-11より、0~5時間(図中では5h と表記)の水分浸透速度と中性化深さには弱い正の相関 が確認できる。一方、0~24時間と0~48時間(図中で はそれぞれ24hと48hと表記)の水分浸透速度と中性化 深さには相関性が確認されなかった。これは、水分浸透 速度と中性化深さを併記した図-9より、中性化領域は 最大で15mm程度であり、5時間の水分浸透深さ(20mm 程度以下)と概ね近い値であるのに対し、24時間以降の 水分浸透が一部を除き20mm以上となり中性化領域(15 mm程度)とは、評価対象領域が異なる影響と考える。

また,図-9より,加熱改質 FA を用いた IF-25 や GF では,中性化深さが 15 mm 前後と比較的大きく,5 時間の水分浸透深さも未混和と比べ大きくなる一方,5 時間以降の水分浸透深さの進行が未混和に比べ大きくなる。これについて次の理由を考察する。

第1の可能性として、20mm以深では内部に存在する 水分により長期的にポゾラン反応が進行して細孔構造が 緻密化するのに対し、表層20mm程度の領域では実環境 の乾燥に伴い、ポゾラン反応の進行が不十分となり緻密 化が進んでいないためと考えられる。

図-12 に織笠の暴露供試体の暴露期間中に測定した 表面透気係数を示す。加熱改質 FA を使用した場合に特 に材齢とともに表面透気係数が増大しており,実環境の 乾湿や温度変化の結果,表面部の気体に関する物質移動 抵抗性が低下していることがわかる。この結果は水分浸 透試験において表層から 20 mm 程度の領域で水分が浸 透しやすくなる結果と一致している。

第2の可能性として、中性化により細孔構造が変化し、 これにより表層 20 mm 程度の箇所において水密性が低 下したことが考えられる。中性化と細孔構造に関する既 往の研究のでは、普通ポルトランドセメントを使用した 場合では中性化により細孔構造の緻密化が図られるが、 高炉セメントでは細孔径分布が粗大径側にシフトすると している。一方、フライアッシュを用いた場合の文献は 見当たらず、この考察は今後検証すべき課題と考える。

5. まとめ

現地暴露した加熱改質 FA コンクリートの特性につい て、下記の事項が明らかになった。

(1) 屋根あり壁なしの小屋に設置した供試体の表面近傍 のひずみを比較した結果,表面から70mmの深さに おいては,加熱改質FAの効果により収縮量が低下す る傾向がある。また,加熱改質 FA と石灰系膨張材を 併用したコンクリートにおいては,膨張材の収縮抑 制効果を確認した。

- (2) 現地暴露した加熱改質 FAを用いたコンクリートの圧 縮強度は、非混和のコンクリートと同等の圧縮強度 を示す。加熱改質 FA と石灰系膨張材を併用したコン クリートの圧縮強度は、膨張材のみや加熱改質 FA お よび膨張材を使用しないコンクリートと比べて約 1.5 倍の強度増加が認められた。
- (3) 現地暴露した加熱改質 FA を混和したコンクリートの 中性化深さは, 混和率の増加に伴い増大する。しかし, 加熱改質 FA と石灰系膨張材を併用したケースでは, 中性化深さが極めて浅くなった。
- (4) 現地暴露した加熱改質 FA を混和したコンクリートの 水分浸透深さは、加熱改質 FA の混和率の増加に伴い 浸せき開始から 5 時間は大きくなり、それ以降は混 和率の増加に伴い低下する。石灰系膨張材を併用し たケースでは、加熱改質 FA を混和しないケースと比 較して全ての時間で水分浸透深さが低減する。

参考文献

- 斎藤隆弘,秋山勇介,上本洋,皆川浩:加熱改質 フライアッシュを用いた現場打ちコンクリートの 諸特性,コンクリート工学年次論文集,Vol. 40, No.1, pp.135-140,2018
- 2) 皆川浩,羽柴俊明,早坂洋平,鈴木貴洋,曽田信雄: 橋梁上部工の壁高欄に作用する凍結防止剤由来の 塩化物イオン量の評価,塩害環境の定量評価に関す る研究小委員会(348 委員会(第2期))委員会報告 書およびシンポジウム講演概要集,コンクリート技 術シリーズ,No.121,pp.135-140,2018
- (佐々木厳, 櫻庭浩樹, 西崎到, 皆川浩: 飛来塩分/付着塩分/浸透塩分の比較評価一駿河海岸での調査から一, コンクリート工学年次論文集, Vol.38, No.1, pp.861-866, 2016
- 小早川真,黄光律,羽原俊祐,友澤史紀:セメント 硬化体中のフライアッシュのポゾラン反応率と各 種要因の影響,コンクリート工学年次論文集, Vol.22, No.2, pp67-72, 2000
- 5) 黄光律,野口貴文,羽原俊祐,友澤史紀:フライア ッシュを外割混合したモルタルの中性化特性,コン クリート工学年次論文集,Vol.21, No.2, pp.109-114, 1999
- 6) 三輪真也,金準鎬,崔亨吉,濱幸雄:高炉スラグ微 粉末を用いたコンクリートの中性化による細孔構 造と耐凍害性の変化,コンクリート工学年次論文集, Vol.39, No.1, pp.943-948, 2017