論文 変形分離原理に基づく RC 造部材の降伏変形角の統計計算法

王 澤霖*1・楠 浩一*2・諏訪田 晴彦*3・大塚 悠里*4

要旨:本論文では,RC造梁,柱の降伏変形角を鉄筋の抜け出しによる変形(抜け出し変形),せん断変形,曲 げ変形に分離する方法に基づき,力学モデルを用いて各変形成分の関係を定式化し,各変形成分の比(抜け 出し変形/曲げ変形,せん断変形/曲げ変形)と部材のシアスパン比の関係を検討した。また,実用性を考慮 して,数理統計手法を用いてさらに簡略な関係式を提案した。得られた提案式による計算値をデータベース による実験値,さらに既存の方法による計算結果と比較し,提案式の合理性と精度を確認した。さらに,降伏 変形角の実験値/提案式による計算値に影響を与える因子を分析した。 キーワード:降伏変形角,変形分離,シアスパン比,数理統計

1. はじめに

鉄筋コンクリート造建築物において、地震応答を精度 良く評価するために、降伏点の変形と耐力は重要な因子 である。また、現行の建築基準法に規定された限界耐力 計算法では¹⁾、建築物の耐震性能を検証するためには、 限界変形と応答値を比較しなければならない。大地震時、 $\mathbf{2-1}$ に示すように建築物の応答低減係数 F_h に応じ要求 曲線を低減すると、想定される応答点も低減する。 F_h は 等価減衰定数 h_{eq} の関数として定義されるため、 F_h の精 度向上のためには h_{eq} の精度が重要である。さらに、 h_{eq} を計算する際、部材の塑性率(最大変形/降伏変形)が 極めて重要であるので、応答低減係数 F_h を精緻化するた めには、建物の塑性率を検討する必要がある。また、塑 性率の精度を評価する際には、降伏点の変形が大きく影 響する。

降伏点の変形の推定法については様々な提案が行わ れている。菅野の研究²⁾により,回帰分析に基づいて提 案された剛性低下率α_yを用いる評価手法が簡単に降伏 (a)曲げ変形 (b 変形角の計算に応用でき,精度も期待できる。しかし, 高強度材料を用いる部材に対しては適用範囲ではない。 申・壁谷澤³⁾,長崎等⁴⁾,姜・北山⁵⁾らは,変形分離に よって,降伏時の ³1 東京大学大学院 工学研究科建築学専攻 (学生会員) *2 東京大学 地震研究所教授 (正会員) *3 国立研究開発法人建築研究所 国際地震工学センター 主任研究員 (正会員) *4 国立研究開発法人建築研究所 構造研究グループ 研究員 (正会員)

よる各変形成分を力学的モデルにより分析し,計算式を 提案している。これらは各変形成分を考慮しているが, せん断力による変形角の計算においては複雑なトラス機 構とアーチ機構を使うため,実用性が低いという問題点 がある。

著者らは梁の変形角を抜け出しによる変形, せん断に よる変形, 曲げ変形に分離して, 算出する降伏変形角の 算定式を提案した ⁶。特に, せん断変形については, 複 雑なトラス機構とアーチ機構を使わず, せん断力はコン クリートが負担すると仮定した簡明な力学モデルで算出 した。そこで,本論文ではこの提案方法に基づいて, 力 学モデルとともに数理統計の手法も用い,各変形成分の 関係を定式化する。さらに,この提案式を用い,梁と柱 部材降伏変形角の簡略式を推定し,データベースや過去 の方法との比較を行い,それらの精度を検討する。

- 2. 本研究で用いた算定式とデータベースの概要
- 2.1 変形分離による降伏変形角の算定式

図-2 に示すように,水平力を受ける部材の変形は抜け出し,せん断,曲げ三つの成分に分けることができる。

よって,降伏時の変形角は,曲げ変形による変形角R_b,

せん断による変形角 R_s , 主筋の抜け出しによる変形角 R_x を用いて式(1)で表せる。

$$R_y = R_b + R_s + R_x \tag{1}$$

また, R_b , R_s , R_x は式(2)~式(4)で表せる 6 。

$$R_b = \frac{1}{3} \varphi_y L \tag{2}$$

$$R_s = \frac{\kappa Q}{\beta_s G A} \tag{3}$$

$$R_x = \frac{L_p}{j} = \frac{\varepsilon_y d_p}{2j} \tag{4}$$

ここで、 φ_{y} は降伏時の曲率, L は部材の長さ、Q は降 伏時のせん断力、G はせん断弾性係数、A は部材の断面 積、 L_{p} は鉄筋の抜け出し長さ、 ε_{y} は主筋の降伏ひずみ、 d_{p} は主筋の定着長、j は応力中心間距離である。また、矩 形断面での形状係数 κ は 1.5 と仮定し、せん断ひび割れ による剛性低下率 β_{s} は 1/3 と仮定する。

2.2 データベースの概要

上記の算定式を検証するために,1980 年から 2013 年 の間に日本国内に発表された論文の内,曲げ降伏を生じ た梁柱部材の実験データから有用なデータを収集した⁷⁾。 なお,次に該当する試験体は検討から除外した。(1)論文 に梁,柱断面,鉄筋量,軸力比,コンクリート強度など 必要なデータの記述がない試験体。(2)梁の場合はスラブ, 柱の場合は袖壁を有する試験体。(3)高強度鉄筋 (490N/mm²以上)および高強度コンクリート(60N/mm² 以上)を用いている試験体。(4)変形角1/50 で,まだ降伏 点に達していない試験体。これらの条件により,検討に 用いた試験体は梁 79 体と柱 360 体である。また,楠[®]が 提案した方法を用いて論文に掲載された荷重-変形曲線 を三折れ線にモデル化し,第二折れ点の変形を降伏変形 角の実験値と定義した。データベースを用いた具体的な 手順を下記で示す:(1)論文中に示された荷重-変形骨格 曲線を変形角 1/50 rad までデジタル化する。(2)ステップ (1)により得られた骨格曲線のデータを,変位を 200 等分 したデータに変換する。(3)荷重-変形曲線を三折れ線 モデル化し,第二折れ点の変位を降伏変位とする。

以上より採用した試験体の一部を表-1に示す。また, 表-1における各変形成分 R_b , R_s , R_x の値は式(2)~式(4) で算出した。本論文の検討においては、これらのデータ ベースを使った。

3. 降伏変形角の数理モデル

3.1 力学モデルによる各変形成分の関係

式(1)より、降伏変形角の提案式は式(5)で表せる。

$$R_y = R_b + R_s + R_x = \left(1 + \frac{R_s}{R_b} + \frac{R_x}{R_b}\right) R_b \tag{5}$$

ここでは力学モデルを用い, R_b/R_s , R_b/R_x の簡略式を 提案する。

(1) 曲げ変形角R_bとせん断変形角R_s

降伏時の断面の曲率 φ_y とせん断力Qの関係により,式 (2)に示す曲げ変形成分 R_b は式(6)で計算できる。

通し番号	断面 b×D (mm×mm)	コンクリ ート強度 (N/mm ²)	鉄筋降伏 強度 (N/mm ²)	軸力比	シアス パン比	引張鉄 筋比	加力形式	降伏点 荷重 (kN)	降伏変形角 の実験値 (%)	式(2)に よる <i>R_b</i> (%)	式(3)に よる <i>R_s</i> (%)	式(4)に よる <i>R_x</i> (%)
梁-1	100×300	18.14	318	0	1	0.88%	両端固定	57.92	0.48	0.10	0.09	0.16
梁-2	100×300	18.14	318	0	1	0.88%	両端固定	50.75	0.31	0.10	0.08	0.16
梁-3	200×400	30.89	426	0	2	1.77%	両端固定	229.10	0.85	0.28	0.11	0.28
梁-4	250×350	34.91	397	0	2.01	1.30%	片持ち	195.40	0.49	0.26	0.08	0.29
梁-5	200×200	33.05	360	0	2.5	0.59%	両端固定	27.90	0.48	0.29	0.03	0.23
柱-1	310×310	45.47	438	0.28	2.4	1.24%	両端固定	315.38	0.54	0.34	0.11	0.31
柱-2	310×310	45.47	438	0.8	2.4	1.24%	両端固定	341.75	0.63	0.34	0.12	0.33
柱-3	310×310	45.47	438	0.61	2.4	1.93%	両端固定	373.37	0.65	0.34	0.13	0.38
柱-4	310×310	45.47	438	0.61	2.4	1.93%	両端固定	391.01	0.85	0.34	0.14	0.42
柱-5	317×317	59.29	433	0.22	2.37	1.19%	両端固定	600.85	1.07	0.33	0.19	0.30
柱-6	317×317	59.29	433	0.22	2.37	1.19%	両端固定	645.36	0.41	0.33	0.20	0.30
柱-7	317×317	59.29	433	0.46	2.37	1.19%	両端固定	710.63	0.31	0.33	0.22	0.30
柱-8	450×450	29.30	485	0.33	2	0.84%	両端固定	536.45	0.67	0.32	0.11	0.34
柱-9	300×300	29.56	427	0.18	2	1.89%	両端固定	305.64	1.35	0.28	0.13	0.50
柱-10	450×450	30.38	485	0	2	0.84%	両端固定	323.54	0.68	0.32	0.06	0.34
柱-11	450×450	30.87	485	0.17	2	0.84%	両端固定	506.15	0.50	0.32	0.10	0.34
柱-12	300×300	31.71	427	0.33	2	1.89%	両端固定	309.90	1.04	0.28	0.13	0.50
柱-13	300×300	31.98	427	0.49	2	1.89%	両端固定	361.05	1.72	0.28	0.16	0.50
柱-14	250×250	32.34	444	0	2.5	1.29%	片持ち	119.51	0.85	0.36	0.07	0.58
柱-15	450×450	32.54	485	-0.1	2	0.84%	両端固定	221.08	0.51	0.32	0.04	0.34

表-1 採用した梁,柱試験体一覧表(一部)

$$R_b = \frac{1}{3}\varphi_y L = \frac{1}{3}\frac{QL}{EI}L = \frac{QL^2}{3EI}$$
(6)

ここで, *E* は部材のヤング係数, *I* は断面二次モーメントである。

式(3)について, せん断弾性係数 G は, 弾性論により, 部材のヤング係数 E を用いて表せる。従って, せん断変 形成分R_sは式(7)で表せる。

$$R_{s} = \frac{\kappa Q}{\beta_{s} GA} = \frac{2(1+\nu)\kappa Q}{\beta_{s} EA}$$
(7)

ここで, vはポアソン比である。

式(6)と式(7)より,式(8)が得られる。

$$\frac{R_s}{R_b} = \frac{2(1+\nu)\kappa Q}{\beta_s EA} \cdot \frac{3EI}{QL^2} = \frac{(1+\nu)\kappa}{2\beta_s} \cdot \frac{D^2}{L^2}$$
(8)

式(8)中の(1+v) $\kappa/2\beta_s$ は部材の材料特性に関わる式であるが、すべての試験体に対して同じ数値となるため、この部分を定数とみなすことができる。曲げ変形成分 R_b とせん断変形成分 R_s の関係式は式(9)に示す。

$$\frac{R_s}{R_b} \propto \frac{1}{a^2} \tag{9}$$

ここで,aはシアスパン比L/Dである。

(2) 曲げ変形角 R_b と抜け出しによる変形角 R_x

抜け出しによる変形角R_xは、図-3 に示すように、せん断力Qによる剛体回転により生じる。引張鉄筋の軸力 Tは式(10)で表せる。

$$T = \frac{QL}{j} \tag{10}$$

この時の鉄筋のひずみは式(11)で計算させる。ここで、 *E*sは鉄筋のヤング係数、*A*ssは引張鉄筋の断面積である。

$$\varepsilon_y = \frac{T}{E_s A_{st}} = \frac{QL}{E_s A_{st}j} \tag{11}$$

従って,抜け出しによる変形角*R*_xは式(12)で計算できる。

$$R_x = \frac{L_p}{j} = \frac{\varepsilon_y d_p}{2j} = \frac{QLd_p}{2E_s A_{sl}j^2}$$
(12)

 $j=\gamma D$ とおくと、 R_x/R_b は式(13)で表せる。

$$\frac{R_x}{R_b} = \frac{QLd_p}{2E_s A_{st} l^2} \cdot \frac{3EI}{QL^2} = \frac{d_p EB}{8\gamma^2 E_s A_{st}} \cdot \frac{D}{L}$$
(13)

ここで,式(9)と式の形をそろえるために,他の因子が 与える影響を定数に近似し, R_x/R_b とシアスパン比の関 係を式(14)のように仮定する。

図-3 抜け出しによる変形角

2. で示した梁と柱のデータベースを用いて、 R_b/R_s 、 R_b/R_x とシアスパン比の関係について式(9)と式(14)に示 すモデルで回帰分析を行った。その結果を図-4と図-5 に示す。また、 R_b/R_s 、 R_b/R_x とシアスパン比の関係式が 以下に得られた。

$$\frac{R_b}{R_s}$$
=0.5204 a^2 , $\frac{R_b}{R_x}$ =0.4583 a

それぞれの決定係数 R²は 0.6256 と 0.5439 である。ここで,決定係数 R²は残差の二乗和を実際のデータの平均からの偏差の二乗和で割ったものを1から引いた値であり, R²=1 の場合に回帰式が実際のデータと完全に一致し, R²=0 の場合に回帰式が実際のデータに全く無関係であることを示す係数である。

この時、式(5)に示した降伏変形角は式(15)で表せる。

$$R_{y} = \left(1 + \frac{1}{0.5204a^{2}} + \frac{1}{0.4583a}\right)R_{b}$$
(15)

3.2 降伏変形角の数理モデル

上記の分析より、力学モデルを考えずに、単純に数理 統計の手法で、式(5)に示す $R_s/R_b+R_x/R_b$ はシアスパン比

aの関数f(a)と仮定し,式(5)に示した降伏変形角は式(16) で表せる。

$$R_y = [1 + f(a)]R_b$$
 (16)

ここで,fはシアスパン比aを変数とする関数である。 式(16)において,関数f(a)のモデルについて,本論文 では,表-2に示す5つの関数モデルを用いて検討す る。

(1)一次関数ax形	$f(a) = C_1 \frac{1}{a}$
(2)一次関数ax+b形	$f(a) = C_1 \frac{1}{a} + C_2$
(3)二次関数ax ² 形	$f(a) = C_1 \frac{1}{a^2}$
(4)二次関数 <i>ax²+bx</i> 形	$f(a) = C_1 \frac{1}{a^2} + C_2 \frac{1}{a}$
(5)二次関数 <i>ax</i> ² + <i>bx</i> + <i>c</i> 形	$f(a) = C_1 \frac{1}{a^2} + C_2 \frac{1}{a} + C_3$

表-2 各部変形角とシアスパン比の関数モデル

表-2に示す定数*C*₁, *C*₂, *C*₃については, データベー スによる回帰分析で決めることができる。

式(15)では力学モデルに基づき、 R_b/R_s 、 R_b/R_x とシア スパン比の関係をそれぞれ求め、係数を定めるが、二次 関数 ax^2+bx 形における定数 C_1 、 C_2 は純粋な統計分析か ら定める。そのため、式(15)と表-2 に示す二次関数 ax^2+bx は数式の形は同じだが、実際には異なるモデルで ある。

4. 検証結果

4.1 数理モデルにおける定数の回帰分析結果

梁と柱のデータベースを用いた回帰分析により求めた**表-2**における定数*C*₁, *C*₂, *C*₃を表-3に示す。

	C_1	C_2	<i>C</i> ₃	R ²
(1) <i>a</i> x形	3.361	-	-	0.701
(2) <i>ax+b</i> 形	3.932	-0.3151	-	0.718
(3)ax ² 形	5.267	-	-	0.462
$(4)ax^2+bx$ 形	0.9396	2.796	-	0.712
$(5)ax^2+bx+c$ 形	-0.3644	4.307	-0.402	0.717

表-3 回帰分析結果一覧表

表-3より,決定係数 R^2 は ax^2 形で最も低く,このモデ ルは実験データと離れているため適さない。 ax^2+bx+c 形 とax+b形の決定係数 R^2 は最も大きく,他のモデルより 実験データに当てはまる。そのため,回帰分析結果より, *ax*²+*bx*+*c*形と*ax*+*b*形のモデルの適合性が高いと考えられる。

4.2 データベースによる比較結果

2. で示したデータベースを用い,式(15)と表-2 に示し た各モデルによる計算値の精度を検証する。式(15)によ る計算結果を図-7 に示し,表-2 に示した一次関数ax形 による計算結果を図-8 に示す。参考のため,変形分離 による式(1)と菅野式による計算結果を併せて図-6 と図 -9 に示している。また,実験値/各提案式による計算 値を表-4 に示す。

公 「 件(反)//月(0)/(軟)// 前 并にの相本 見公							
検証方法	平均值	標準偏差	±30%以内の割合				
式(15)	1.002	0.340	64.9%				
ax形	0.980	0.341	65.6%				
ax+b形	1.000	0.340	64.1%				
ax ² 形	1.116	0.387	62.6%				
ax^2+bx \mathbb{H}	0.992	0.339	65.1%				
ax^2+bx+c \mathbb{H}	1.001	0.341	64.5%				
式(1)	1.003	0.330	68.6%				
菅野式	1.193	0.557	49.0%				

表-4 降伏変形角の実験値/計算値の結果一覧表

各数理モデルによる計算結果を詳細に比較すると、平 均値と標準偏差から,二次関数ax²形では平均値が大きく, ±30%以内の割合が小さいため、誤差が大きくなったと 言える。 ax^2+bx 形による計算結果は ax^2+bx+c 形の結果と ほぼ同じくて, ax²形より実験値との整合が良くなったと 考えられる。また、一次関数ax形による計算結果はax+b 形の結果とほぼ同じで、特に、ax+b形の結果は実験値と 最も近い。ax+b形では、ax形を定数bを用いて修正するこ ととなり、平均値は1に近くなっており、式(1)による結 果と近くなった。表-3 に示す回帰分析結果と併せて考 えると, ax²形の決定係数 R²は小さく, モデルの適合性 が低いため, 誤差が大きくなったと考えられる。また, 回帰分析結果より, ax^2+bx+c 形とax+b形の決定係数 R^2 は 最も良く,この二つのモデルにおける計算結果は実験値 と良い整合性を示した。以上の分析により,式(15)の代わ りに、一次関数ax+b形および二次関数ax²+bx+c形を用い ることが可能である。

式(15)と式(1)の計算結果を比較すると,表-4より平 均値と標準偏差はそれぞれほぼ同じとなったことが分か る。さらに図-6と図-7を比較すると,各試験体による 計算結果は近いため,簡略化された式(15)を使用しても 問題がないと考えられる。

表-4より,式(15)と表-2に示した一次関数ax形によ

図-6 式(1)による計算値と実験値の比較

図-8 ax 型回帰式による計算値と実験値の比較

図-10 シアスパン比一実験値/計算値関係

図-12 軸力比一実験値/計算値関係

図-7 式(15)による計算値と実験値の比較

図-9 菅野式による計算値と実験値の比較

図-11 引張鉄筋比一実験値/計算値関係

図-13 コンクリート強度一実験値/計算値関係

図-14 引張鉄筋降伏強度一実験値/計算値関係

る計算結果を比較すると、式(15)とax形の実験値/計算 値の結果は近いことが分かる。算定式の簡略化を考える と、式(15)に示した計算式は一次関数ax形のモデルを用 いてさらに簡略化できる。

図-9 に示すように菅野式による計算結果は式(1)と比較すると,菅野式による計算結果のばらつきが大きくなっており,表-4 でも本論文に提案した式(15)は菅野式より良い整合性を示した。

4.3 実験値/計算値の影響因子分析

降伏変形角の実験値/計算値(式(15))とシアスパン比, 引張鉄筋比,軸力比,コンクリート強度および引張鉄筋 降伏強度の関係を図-10~図-14に示す。

コンクリート強度は、高強度化に伴い、実験値/計算 値(式(15))はやや減少する傾向が見られた。他の因子に ついては、明確な相関は見られなかった。また、シアス パン比が3~10の場合と引張鉄筋降伏強度が300N/mm²以 下となる場合のデータは少ないため、今後はさらに多く の実験データベースを用いて検証する必要がある。

5. まとめ

本検討は RC 造部材降伏変形角の計算方法について, 変形分離の原理に基づき,簡略式を提案するために,各 変形成分の関係を分析した。得られた結果を以下にまと める。

(1)提案式を検証するために,過去の論文に基づき,梁, 柱部材の実験データベースを整備した。論文に掲載され た荷重一変形曲線をデジタル化し,三折れ線モデル化し て実験による降伏点を定義した。

(2)降伏変形角の計算について、変形分離の原理に基づき、力学モデルの手法で、 R_b/R_s 、 R_b/R_x とシアスパン比の理論式を導出した。

(3)変形分離による計算式の実用性を向上するため、上 記(1)の理論式を簡略化した式を提案した。また、数理統 計の手法を用いて,さらに簡略な統計式を提案した。また,実験データベースを用いて,これらの提案式の精度 を検証し,実験値との整合が良いことが分かった。

(4)影響因子の分析結果より、シアスパン比、引張鉄筋 比、軸力比および引張鉄筋降伏強度と実験値/計算値に 明確な相関は見られなかったが、コンクリート強度は、 高強度化に伴い、実験値/計算値は減少する傾向を示し た。

今後はさらに多くの実験データベースを用いて検証す る必要がある。

謝辞

本研究は国土交通省平成30度建築基準整備促進事業「鉄 筋コンクリート造の限界耐力計算における応答変位の算 定精度向上に向けた建築物の振動減衰性状の評価方法の 検討」(調査番号S30)の助成を受けて実施した。関係者 各位に謝意を表します。

参考文献

- 国土交通省国土技術政策総合建築研究所他:2015 年 版 建築物の構造関係技術基準解説書,2015
- 菅野 俊介:鉄筋コンクリート造部材の復元力特性 に関する研究、コンクリートジャーナル、Vol.11、 No.2、pp. 1-9、1973.2
- 申 範昊,壁谷澤 寿海:高強度材料を使用した RC 梁部材の復元力特性に関する研究,構造工学論文集, Vol.40B, pp. 315-322, 1994.3
- 4) 長崎 充,渡辺 達也,前田 匡樹:鉄筋コンクリ
 ート梁・柱部材の降伏変形評価法,コンクリート工
 学年次論文報告集, Vol.18, No.2, pp. 797-802, 1996
- 5) 姜 柱,北山 和宏:鉄筋コンクリート梁の降伏変 形推定方法,日本建築学会構造系論文集, Vol.62, No.501, pp. 85-92, 1997.11
- 6) 王 澤霖他: RC 造建物の振動減衰性状評価方法の 検討 その7 変形分離による RC 造梁に関する降 伏変形角の新しい計算方法とその精度,日本建築学 会大会学術講演梗概集(北陸), pp.635-636, 2019.9
- 7) 向井 智久他:建築研究所資料 実験データベース を用いた鉄筋コンクリート造部材の構造特性評価 式の検証,国立研究開発法人 建築研究所,2016.11
- 楠 浩一:加速度記録により求めた R/C 造建物の性 能曲線のための外挿法に関する研究,日本建築学会 構造系論文集, Vol.84, No.761, pp.961-971, 2019.7