論文 減振機能を有する鉄筋コンクリート造梁の開発研究

加賀 朱音*1・大塚 悠里*2・小池 浩香*3・平石 久廣*4

要旨:本論文は,通常の配筋法の鉄筋コンクリート造部材よりも早期に降伏し,結果として小さな変形段階 から良好なエネルギー吸収能を示し,応答低減が可能となる鉄筋コンクリート造梁の開発を目標とする。す でに著者らはこのような構造(減振構造)の有用性を理論的,解析的に解明している。しかしながらその具体 的な構造詳細の開発は行われていない。本論文では,減振構造梁の具体的な工法を考案し,その妥当性を構 造実験により検証するとともに,本構造の基本的な構造性状を明らかにした。

キーワード:鉄筋コンクリート造梁,構造実験,減振構造,新配筋法,エネルギー吸収,等価減衰定数

1. はじめに

近年,建築物の設計において大地震を経験後も大規模 な修復等の必要がなく,継続使用が可能であることが求 められるようになりつつある。そのため制振構造や免震 構造などの構造システムが普及しつつあるが,これらの システムの導入には装置の設置による計画上の制約やコ ストの上昇などの課題がある。

そこで著者らはこれらの課題に対する一つの解決策と して、応答低減を可能とする減振構造の開発に取り組ん でいる。減振構造とは、部材端部の危険断面において鉄 筋量を減らすことで通常の鉄筋コンクリート造よりも早 期に降伏させ、小さな変形段階から良好なエネルギー吸 収能を確保し応答低減を可能とする構造である。

既に寳部,平石らは部材剛性を落とすことなく,部材 を早期に降伏させることで小さな変形段階から優れたエ ネルギー吸収能力をもつ減振構造の提案を行ない,建物 応答変形角が 1/100~1/75 程度に収める場合には有用で あることを理論的,解析的に示している。^{1,2)}

しかしながら本構造に対応する減振機能を有する構造 部材の具現化はされておらず,具体的な構造詳細の開発 が今後の課題となっている。そこで本研究では減振機能 を有する鉄筋コンクリート造梁の開発を目的とし,具体 的な工法を提示するとともにその構造実験を行い考案し た工法の妥当性の検証および基本的性状を明らかにする。

2. 工法概要

減振機能を有する鉄筋コンクリート造梁の開発にあ たり以下に示す2つの工法を考案した。いずれの工法も 通常の鉄筋コンクリート造よりも早期に部材の降伏を図 り、小さな変形段階から良好なエネルギー吸収能力を見 込んでいる。

2.1 主筋非定着工法

図-1に主筋非定着工法の概念図を示す。主筋のうち, 内側に配した鉄筋を固定端に定着させずに,梁端部の危 険断面における主筋量を減少している。

2.2 異径間継手工法

図-2 に異径間継手工法の概念図を示す。機械式継手 を用い,梁端部における鉄筋径を端部以外の鉄筋径より も小さなものにすることで梁端部の危険断面における鉄 筋量を減少している。

図-1 主筋非定着工法概念図

図-2 異径間継手工法概念図

3. 試験体概要

図-3に試験体詳細図,図-4に試験体名称を示す。 表-1に試験体概要を示す。試験体は全部で4体あり, 曲げ降伏先行の14階建て鉄筋コンクリート造の梁を 想定し³⁾,実大の1/2スケールのものを基本とした。

*1 明治大学大学院博士前期課程 理工学研究科 (学生会員)
*2 明治大学大学院博士後期課程 理工学研究科 日本学術振興会特別研究員 DC1 修士(工学) (学生会員)
*3 明治大学大学院博士前期課程 理工学研究科

*4 明治大学教授 理工学部建築学科 工博 (国立研究開発法人建築研究所 客員研究員) (正会員)

試験体はいずれも両端スタブ付きであり, 有効スパン 長さ1600mm,梁断面せい350mm,梁断面幅250mm, せん断スパン比 2.5, せん断補強筋間隔 100mm とした。 表-2,表-3に使用した鉄筋,コンクリートの機械的性 質を示す。以下に試験体の詳細を示す。

(1) U1L1

主筋をスタブ端まで通した通常の配筋法の試験体(基 本モデル)である。上端主筋,下端主筋ともに 4-D16(引張 鉄筋比 pt=1.0%)とした。せん断補強筋は 4-D6 とした。

(2) U0.5L0.5

U1L1と比べ,引張鉄筋比を半減させた試験体である。 上端主筋, 下端主筋ともに 2-D16(p=0.5%)とした。せん 断補強筋は 2-D6 とした。

(3) UG0.5LG0.5 非定着

主筋非定着の工法を用いた減振構造の試験体である。 梁中央部において上端主筋、下端主筋ともに 4-D16(pt=1.0%), 梁端部においては内側に配した上端およ び下端の主筋2本を非定着とし、危険断面にて主筋量を 半減させた 2-D16(pt=0.5%)である。せん断補強筋は 4-D6 とした。

(4) UG0.5LG0.5 異径間

異径間継手の工法を用いた減振構造の試験体である。 機械式継手を用い,梁中央部において上端主筋,下端主 筋ともに 2-D22(pt=1.0%), 梁端部危険断面においては 2-D16(pt=0.5%)とした。なお、梁中央部の引張鉄筋比は U1L1 と同じである。せん断補強筋は 2-D6 とした。

図-3 試験体詳細図

試験体		U1L1	U0.5L0.5	UG0.5LG0.5 非定着	UG0.5LG0.5 異径間	① ② UG 0.5 LG 0.5	
試験体スパン(mm)		1600					
梁幅×梁せい(mm)		250×350					
コンクリート強度Fc(N/mm ²)		24					
	せん断スパン比	2.5	2.5	2.5	2.6	- ②L:下端	
配筋 -	主筋(梁中央部)	4 D46	2-D16	4-D16	2-D22	③G:減振工法	
	主筋(梁端部)	4-016		2-D16	2-D16		
	せん断補強筋	4-D6@100	2-D6@100	4-D6@100	2-D6@100	④上端端部における引張鉄筋比(%)	
	引張鉄筋比p _t (梁端部)	1.0	0.5	0.5	0.5		
計算値 (終局状態)	曲げ耐力(kN・m)	97.1	48.6	48.6	47.0	⑤下端端部における 引張鉄筋比(%)	
	曲げ降伏時のせん断力(kN)	121.4	60.7	60.7	58.8		
	せん断耐力(kN)	157.4	145.7	123.0	119.1	図-4 試験体名称	

表-1 試験体概要

表-2 鉄筋強度

=+* E€ /+	使用如八	圧縮強度	ヤング率	
言认為失144	使用部方	(N/mm ²)	$(x10^{4} N/mm^{2})$	
U1L1		23.7	2.63	
U0.5L0.5	上スタブ 梁部材 下スタブ	24.4	2.66	
UG0.5LG0.5非定着		24.6	2.64	
UG0.5LG0.5異径間	1	24.8	2.72	

表-3 コンクリート強度

AH 45 4 7	降伏強度 最大強度		ヤング係数	降伏歪	
	(N/mm²)	(N/mm ²)	(×10 ⁵ N/mm ²)	(%)	
D6(SD345)	482.5	566.0	1.83	0.45*	
D16(SD345)	402.3	411.1	1.85	0.22	
D22(SD345)	394.3	426.2	1.83	0.26	
0.2%オフセット					

4. 載荷方法

実験は、図-5 に示す建研式逆対称加力装置を使用した。載荷は部材角制御で行い、水平アクチュエーターにより正負方向にせん断力を与えた。加力サイクルは、いずれの試験体も目標所定部材角 R=1/800, 1/400, 1/200, 1/100, 1/50 とした。R=1/800 は正負繰返し載荷を1回行い、それ以降は正負繰返し載荷を2回行った。

なお、いずれの試験体も軸力が0となるようにした。

5. 履歴性状

図-6に履歴性状を示す。

(1) U1L1

R=1/100 に至る過程で降伏し、R=1/50 のピーク時に最 大曲げモーメント M_{max}=98.6kN・m となった。

(2) U0.5L0.5

R=1/100 に至る過程で降伏し、R=1/50 のピーク時に最

大曲げモーメント M_{max}=53.3kN・m となった。

(3) UG0.5LG0.5 非定着

R=1/200 に至る過程で降伏し、R=1/50 のピーク時に最 大曲げモーメント M_{max}=55.3kN・m となった。

(4) UG0.5LG0.5 異径間

R=1/200 に至る過程で降伏し、R=1/50 のピーク時に最 大曲げモーメント M_{max}=54.1kN・m となった。

いずれの試験体も最大曲げモーメントは理論値を若 干上回り, R=1/50を経験後も安定した履歴性状を示した。

6. 諸強度

表-4 に各試験体の諸強度を示す。曲げ終局モーメン ト Mu は梁の曲げ終局強度学会略算式⁴⁾, せん断終局強度 Qsu は荒川 mean 式⁴⁾を用いて算出した。付着強度につい ては設計用付着応力度 τf に対し,付着信頼強度 τbu が最 も厳しい梁中央部上端における強度を示す。また付着強 度は文献⁵⁾に基づき,算出した。

我 · · · · · · · · · · · · · · · · · · ·							
	実験値		理論値			せん断	付着強度
試験体	M _{max} (kN ∙ m)	Q _{max} (kN)	M _u (kN ∙ m)	Q _{su} (kN)	M _{max} /M _u	新裕度 (Q _{su} /Q _{max})	T _{bu} /T _f
U1L1	98.6	123.2	90.6	171.0	1.11	1.39	1.3
U0.5L0.5	53.3	66.6	45.3	133.6	1.20	2.01	1.9
UG0.5LG0.5 非定着	55.3	69.1	45.3	133.9	1.24	1.94	1.3
UG0.5LG0.5 異径間	54.1	67.6	43.9	130.0	1.26	1.92	1.0

表一4 諸強度

(d)UG0.5LG0.5 異径間

図-6 履歴性状

7. 破壊性状

図-7 に各試験体の R=1/100 および 1/50 におけるひび 割れ図およびひび割れ幅を示す。ひび割れ幅のカッコ内 の数字は R=0 における残留ひび割れ幅を示している。写 真-1 に R=1/50 経験後の試験体全体写真を示す。

(1) U1L1

R=1/800 に至る過程で最初の曲げひび割れが発生した。 R=1/400 サイクルにおいて曲げせん断ひび割れが発生した。その後、変形角の増大とともにひび割れは増加し、 梁全体においてひび割れの発生が見られた。R=1/50 において曲げせん断ひび割れの最大幅は 2.5mm であった。

(2) U0.5L0.5

R=1/800(rad.)に至る過程で最初の曲げひび割れが発生 した。R=1/400 サイクルにおいて曲げせん断ひび割れが 発生した。R=1/200 において主筋に沿った縦ひび割れが 発生した。R=1/50 において曲げせん断ひび割れの最大幅 は 3.5mm であった。

(3) UG0.5LG0.5 非定着

R=1/800 に至る過程で最初の曲げひび割れが発生した。

R=1/200 において曲げせん断ひび割れが発生したがその 後は曲げせん断ひび割れの増加はみられなかった。 R=1/200 で主筋に沿った付着ひび割れが発生した。 R=1/50 において曲げせん断ひび割れの最大幅は 1.9mm, 付着ひび割れの最大幅は 4mm であった。

(4) UG0.5LG0.5 異径間

R=1/800 において最初の曲げひび割れが発生した。 R=1/400 サイクルにおいて曲げせん断ひび割れが発生した。 R=1/200 以降,機械式継手および主筋に沿った付着 ひび割れが発生した。R=1/50 において曲げせん断ひび割 れの最大幅は 0.35mm,付着ひび割れの最大幅は 0.25mm であった。また,他の試験体と比べコンクリートの損傷 が軽減される傾向がみられた。これは機械式継手が継手 部の曲げひび割れを抑制するとともに,圧縮力を負担し たためコンクリートの損傷が軽減されたと考えられる。

ひび割れ性状の特徴として、減振工法を用いたモデル は残留ひび割れ幅 0.1mm 以上のひび割れの発生は梁端 から 50mm 程度の区間に限定され梁端部へのひび割れ集 中がみられた。

8. 曲率分布

図-8 に曲率測定区間,図-9 に U1L1,図-10 に U0.5L0.5,図-11 に UG0.5LG0.5 非定着の曲率分布図を 示す。

U1L1 および U0.5L0.5 はスタブとの境界面から 100mm を超える範囲においても曲率が大きく出ている部分が あるのに対し, UG0.5LG0.5 非定着はスタブとの境界面 から 100mm の範囲に曲率が集中した。

UG0.5LG0.5 異径間においても UG0.5LG0.5 非定着と 同様の傾向が見られた。

9. 降伏変形角

図-12 に各試験体の正加力時における包絡線を示す。 図中に各試験体の主筋に貼り付けたゲージのデータ より特定した降伏変形角を示す。

U1L1 は R=1/145, U0.5L0.5 は R=1/163, UG0.5LG0.5 非 定着は R=1/230, UG0.5LG0.5 異径間は R=1/230 で降伏し た。

減振構造である UG0.5LG0.5 非定着および UG0.5LG0.5 異径間は U1L1 および U0.5L0.5 と比べ,梁端部における 主筋量が梁中央部より少ないためヒンジ領域が梁端部 に限定され小さな変形段階での降伏が見られた。

10. 定常ループ

図-13,図-14 に UG0.5LG0.5 非定着および UG0.5LG0.5 異径間の R=1/100 における定常ループを示 す。なおグラフの縦軸は曲げモーメントを最大曲げモー メントで除し,基準化した値である。それぞれのグラフ には U1L1 と U0.5L0.5 の定常ループも併せて示す。

UG0.5LG0.5 非定着および UG0.5LG0.5 異径間は U1L1 より大きな履歴ループを描く傾向がみられた。これはヒ ンジ領域の耐力が他の領域に比べ小さいことによる早 期降伏およびヒンジ領域長さの限定による歪の集中に より,通常の配筋法によるものより戻り剛性が大きくか つ U1L1 で顕著なスリップ的性状が小さくなったためと 考えられる。

また R=1/50 においても同様の傾向を示した。

11. 等価減衰定数

等価減衰定数 h_{eq} は図-15 の定常ループより(1)式で求められる。図-16 に各試験体の等価減衰定数を示す。

図-15 定常ループにおける減衰定数

すべての試験体が降伏前である R=1/400 では U1L1 が 3.52%, U0.5L0.5 が 3.68%, UG0.5LG0.5 非定着が 3.84%, UG0.5LG0.5 異径間が 4.11%となり等価減衰定数に大き な差はみられなかった。

UG0.5LG0.5 非定着および UG0.5LG0.5 異径間が降伏 した直後である R=1/200 においても, U1L1 が 4.36%, U0.5L0.5 が 3.91%, UG0.5LG0.5 非定着が 4.29%, UG0.5LG0.5 異径間が 4.29%とすべての試験体で等価減 衰定数に大きな差はみられなかった。

R=1/100 では U1L1 が 7.12%であったのに対し, UG0.5LG0.5 非定着は 13.14%, UG0.5LG0.5 異径間は 14.88%となりそれぞれ U1L1 の約 1.9 倍,約 2.1 倍の値 を示した。また U0.5L0.5 は 10.27%と U1L1 の約 1.4 倍の 値を示したが, UG0.5LG0.5 非定着の約 0.8 倍, UG0.5LG0.5 異径間の約 0.7 倍であった。

R=1/50 では U1L1 が 15.0%であったのに対し, UG0.5LG0.5 非定着は 20.7%, UG0.5LG0.5 異径間は 20.7%となりそれぞれ U1L1 の約 1.4 倍,約 1.4 倍の値を 示した。また U0.5L0.5 は 18.2%と U1L1 の約 1.2 倍の値 を示したが,UG0.5LG0.5 非定着の約 0.9 倍,UG0.5LG0.5 異径間の約 0.9 倍であった。

以上のことより変形角が R=1/100~R=1/50 程度の場合, 減振モデルは U1L1 および U0.5L0.5 と比べ良好な減衰能 力を示した。

12. まとめ

本論文では,通常の鉄筋コンクリート造部材よりも早 期に降伏し,結果として小さな変形段階から良好なエネ ルギー吸収能を示し,応答低減が可能となる鉄筋コンク リート造梁の開発を目標とし二つの工法を考案した。ま た構造実験によりその性能確認を行った。構造実験より 得られた結果を検討し,以下の結論が得られた。

 U1L1 および U0.5L0.5 は R=1/100 に至る過程で降 伏した。一方,減振構造とした UG0.5LG0.5 非定着およ び UG0.5LG0.5 異径間は R=1/200 に至る過程で早期に降 伏した。

(2) R=1/100, 1/50 における UG0.5LG0.5 非定着および
 UG0.5LG0.5 異径間の等価減衰定数は、U1L1 および
 U0.5L0.5 のそれを上回り、良好な減衰能力を示した。

 (3) 曲率分布から、減振構造とした UG0.5LG0.5 非定着 および UG0.5LG0.5 異径間は小さな変形レベルから変形 が梁端部に集中した。

(4) ひび割れ性状より減振構造とした UG0.5LG0.5 非定 着および UG0.5LG0.5 異径間は損傷が梁端部に集中し, 梁全体のひび割れが減少した。

以上のことより本論文で提示した2つの鉄筋コンクリ ート造梁の工法は十分な減振機能を有するといえる。

なお、本論文では減振構造の基本的性状を検討する ため梁端部の危険断面における鉄筋量を減少させてい る。実際に用いる場合には通常の配筋法に非定着筋を 付加し、減振部材とすることなどを想定している。

謝辞

実験にあたり五洋建設(株)の関係者様に多大なご協力 賜った。また鉄筋継手については東京鉄鋼(株)より支援 を頂いた。深く感謝の意を表します。

参考文献

- (1) 寳部諒, 平石久廣;顕著な応答低減を可能にする高エ ネルギー吸収機構構造に関する研究, 日本建築学会 大会学術講演梗概集(九州), pp279-280, 2016.08
- (2) 寳部諒, 平石久廣;減振構造建物の地震時応答評価に 関する研究, 日本建築学会大会学術講演梗概集(中 国), pp705-706, 2017.07
- (財)日本建築防災協会:構造設計・部材断面事例集,
 (財)日本建築防災協会,2007
- 建築物の構造関係技術基準解説書編集委員会;2015 年版建築物の構造関係技術基準解説書,全国官報販 売協同組合,2015
- 5) (社)日本建築学会;鉄筋コンクリート造建物の靭性保 証型耐震設計指針・同解説,(社)日本建築学会,2001