論文 実物大型枠を用いた覆エコンクリート天端部の充填状況と品質に関 する実験

小池 悟*1·野間 康隆*2·多宝 徽*3·齋藤 淳*4

要旨:山岳トンネルにおける覆工コンクリート天端部の施工は,施工完了ブロックとの境界付近に設置した 吹上げ口よりコンクリートポンプの圧送力でもってスパン全体にコンクリートを充填していく吹上げ方式に より実施される。この施工方法ではコンクリートを10m程度流動させることとなるが,コンクリート品質へ の影響について,十分に検討されていない。そこで,吹上げ方式によるコンクリート品質への影響を検証す るために,覆工天端部を模擬した実物大型枠を用いて実験を行った。実験を通じて,吹上げ口から充填して いくコンクリートの挙動と,吹上げ方式で打ち込まれるコンクリートの品質が良好であることを確認した。 キーワード:NATM,覆工コンクリート,吹上げ方式,充填状況,材料分離

1. はじめに

矢板工法時代の覆エコンクリートは,覆工天端部に打 込み用の配管を設置し,配管を引き抜きながら打ち込ん でいく引抜き方式で施工が行われていた。昭和60年代以 降,NATMが主流となり,覆工天端部の施工は吹上げ方 式による打込みに変わった。吹上げ方式は,既設コンク リートとの境界(ラップ側)から75 cm 程度離れた位置に 吹上げ口を取り付け,そこからコンクリートポンプの圧 送力でもってコンクリートを型枠内部へ送り込んでいく 打込み方法である¹⁾。これにより,引抜き方式では,コ ンクリートの投入箇所が随時移動し,コンクリートの連 続性を保つことが困難であったのに対して,吹上げ方式 は1箇所から連続的に打込みを行えるため,相対的に覆 エコンクリートの品質は向上した²⁾。

しかし,覆エコンクリートを施工する際に使用する型 枠(セントル)は、延長10.5m程度のものを使用し、吹 上げロー箇所からつま部にかけて連続して打ち込んでい くため、コンクリートを最大10m程度流動させる必要 が生じる。このような打込み方法は、一般の土木構造物 の場合と比較して特異な打込み方法となるが、これによ るコンクリート品質への影響については十分に検討され ていない。

また,覆工天端部施工時の締固めは,セントルの作業 窓から棒状バイブレータを用いて行われ,バイブレータ による締固め作業を行えるコンクリートは,棒状バイブ レータが届く範囲に限られる。そのため,任意の位置で バイブレータによる締固めを行うことは難しく,時間差 を持って打ち込まれたコンクリートの打重ね部分の締固 めを十分に行うことができない場合もある。このような ことから, 覆工天端部でのコンクリートの締固め不足や コールドジョイントの発生というような, コンクリート の均一性や一体性が損なわれることが懸念される。

そこで、吹上げ方式による打込み方法がコンクリート の品質に与える影響を検証することを目的として、実物 大の模擬型枠を用いて実験を実施した。

2. 実験概要

2.1 模擬型枠

実験に用いた型枠はトンネルの覆工コンクリートの 天端部を実物大で模擬したものである。型枠の寸法は, 延長 10.5 m,幅 5.0 m,厚さ 0.35 mとした。写真-1に 型枠の外観,図-1に型枠の平面図を示す。

模擬型枠は、内型枠と外型枠からなり、内型枠はトン ネル現場のセントルの天端部を再現し、外型枠は地山を 模した。既設コンクリートとの境界面(ラップ側)は、 既設コンクリートに替えて、鋼製のつま板で代替した。 外型枠と内型枠の間は型枠セパレータで緊縛し、コンク リートの打込みによる型枠のはらみを抑制している。ま た、作業窓は実際のセントルを模して1.5 m間隔に設置 した。ラップ側にはエア抜き孔を1箇所設置した。

2.2 打込み手順

コンクリートの打込みは,吹上げロー箇所から行った。 締固めは内型枠に設置された作業窓から,棒状バイブレ ータを用いて実施した。

コンクリート打込み数量 19.4 m³に対して,4 m³積み の生コン車 5 台分(合計 20 m³)のコンクリートを用い て実験を行った。また,コンクリート硬化後に充填性状 を観察できるよう,コンクリートを生コン車毎に異なる

*1 (株)安藤・間 技術本部 技術研究所 土木研究部 修(工)(正会員)
*2 (株)安藤・間 技術本部 技術研究所 土木研究部 博(学)(正会員)
*3 (株)安藤・間 土木事業本部 先端技術開発室 博(工)
*4 (株)安藤・間 技術本部 技術研究所 土木研究部 博(工)(正会員)

色で着色した。表-1にコンクリート着色の諸元を示す。 本実験では,現場に到着した生コン車に粉体状の着色剤 を投入し,2分間高速撹拌することでコンクリートを 着色した。

2.3 コンクリート配合と使用材料

表-2にコンクリートの使用材料,表-3にコンクリ ートの配合表を示す。コンクリートのスランプは,着色 によるスランプロスを考慮し,ベースコンクリートのス ランプを21 cm とし,着色後のスランプを18±2.5 cm で 管理した。

2.4 充填管理

(1) 圧力計

打込み時の内型枠にかかる充填圧をリアルタイムで計 測するために,内型枠天端部のスキンプレートに圧力計 を設置した。圧力計の設置箇所は,ラップ側,スパン中 央,つま側の3箇所とした(図-1参照)。

(2) 充填検知システム

充填検知システム³は,充填状況を確認したい箇所に 振動デバイスを設置し,コンクリートと振動デバイスの 接触状況により充填状況を判定するものである。本実験 では,地山側に相当する外型枠の内表面に振動デバイス を設置した。設置箇所は,圧力計の直上の外型枠内表面 とした。

3. 吹上げ方式による充填状況

3.1 従来の覆工天端部施工方法

一般に,覆エコンクリートの施工は,側壁部の打込み 完了後,打込み口を天端の吹上げ口に切り替え,吹上げ 方式により天端部の打込みが行われる。吹上げ方式によ り打ち込まれた天端部のコンクリートは,図-2の(a)→ (b)→(c)の順番で充填されていく。すなわち,吹上げ口か ら型枠内部に打ち込まれたコンクリートは、ラップ部の 際を天端から肩部に向かって横断方向に流下した後,つ ま側に向かって,縦断方向に肩部が充填されていく(図 -2(a)参照)。その後,天端部に向かって徐々に充填高 さを上げていく。流れてくるコンクリートは棒状バイブ レータを用いて人力で締固めが行われ,セントルの表面 を覆っていく。バイブレータを操作する作業員はコンク リートの充填面積が広がるのにしたがって,作業窓を閉 めながらつま側に移動する(図-2(b)参照)。作業窓を すべて閉鎖した後は(図-2(c)参照),つま板近傍を除いて,バイブレータを用いることなく吹上げ口からコンクリートを圧入する。その後,つま側まで完全に充填された段階で打込み完了となる。

写真一1 実験用模擬型枠外観

表-1 コンクリート打込み諸元

	生コン車台数	累計打込み数量(m ³)	着色
1	1 台目	0~4	茶
2	2 台目	4~8	橙
3	3 台目	8~12	黄
4	4 台目	12~16	赤
5	5 台目	16~20	青

表-2 コンクリート使用材料

材料	種類	仕様				
セメント	普通ポルトランド セメント	密度:3.15g/cm ³				
	砂	表乾密度:2.58g/cm ³ , 実績率:2.5%				
洲骨材	砂利	表乾密度: 2.69g/cm ³ , 実績率: 3.1%				
粗骨材	砕石	表乾密度:2.69g/cm ³ ,実績率:60.0%				
混和剤	高性能 AE 減水剤	ポリカルボン酸系化合物				
着色剤	酸化鉄	比重:4.1~5.2g/ml				

表-3 コンクリート配合表

呼び強度 スランプ	コヨンプ 粗骨材	粗骨材	水セメント	细母社家	単位量					
	最大寸法	比	和自物学	水	セメント	細竹	骨材	粗骨材	混和剤	
N/mm ²	cm	mm	%	%	kg/m ³					
27	21 (着色後:18)	20	53.0	48.9	175	330	596	266	928	3.30

(a) 肩部の充填

吹上げ方式によるコンクリート打込み概要 図-2

(c) つま部 到 達 時

(a) 肩部の充填

(b) 天端部の充填 写真-2 実験時のコンクリート充填状況

3.2 実験による検証

(1) 打込み時の挙動

本実験で再現した覆工天端部のコンクリートの充填挙 動について、打込み時および硬化後の目視観察により検 討した。

写真-2(a)は1台目のコンクリートの打込み状況で, 図-2(a)のように吹上げ口から, 肩部に向かってコンク リートが流動している。写真-2(b)は3台目のコンクリ ート打込み完了時の充填状況である。この時点で、覆工 内面となるセントルの天端部の大部分を覆い、つま板か ら3mの付近まで到達している(図-3参照)。写真-2(c)は、つま側までコンクリート到達直前の状況である。

写真-3,写真-4に硬化後のコンクリートの上面・ 下面を示す。写真上に示している①~⑤の数字は打込み 順序を示している。写真-3,写真-4に示したコンク リート上面・下面の分布は概ね同じ傾向を示している。 また、1~3 台目に打ち込んだコンクリートは肩部に充 填され、4、5台目のコンクリートは天頂部に帯状に充填 されていることがわかる。

コンクリート打込み時に確認した状況では、3 台目ま で打込み完了した時点ではつま板から3mの区間を除い て、コンクリートがセントル天端を覆っていた(図-2 (b), 図-3参照)。一方で, 硬化後のコンクリートの充 填状況をみると、天端部には4,5台目に打ち込んだコン クリートが帯状に充填されている。このことから、圧入 によって打ち込まれた4,5台目のコンクリートがセント ル天端部を覆っていた3台目までのコンクリート肩部に 押し出し、これを置換しながら充填していったものと推 測される。

図-3 3台目打込み完了時の充填状況

写真-3 硬化後コンクリートの充填状況(上面)

写真-4 硬化後コンクリートの充填状況(下面)

これまで筆者らは、セントル表面を覆いながらつま側 にまで広がってくるコンクリートをバイブレータで締め 固めることにより、

覆工天端部下面の表面の気泡や

縞模 様の発生等の初期欠陥を防止していると考えていた。し かし、打込み完了後に天端部を覆っていたコンクリート は4,5 台目に打ち込んだコンクリートで、通常の棒状 バイブレータでの締固めは困難となる。4,5 台目に打ち 込んだコンクリートは、コンクリートポンプ車の圧送力 による押出し(圧入)のみで天端部に充填されていくこ とから、覆工天端部下面の表面品質は圧入によって担保 されているものと考えられる。

(2) 充填圧力の経時変化

図-4に型枠に設置した圧力計の計測結果を示す。こ こで, 覆工巻厚(0.35 m)分のコンクリートの自重によ り載荷される圧力は 8 kPa (8 kN/m²=0.35 m×23 kN/m³) となる。この値がコンクリート充填の目安となる。スパ ン中央部の圧力計(No.2)が8 kPaを越えてくるのは, 概ね4台目の打込み開始以降である。その後も圧力の上 昇は緩やかで、つま側の圧力計(No.3)が8kPaを超えるの は打込み終了直前で,最後に加圧充填を行うことで,No.1 ~3の圧力計の値が急激に上昇する。

充填検知システムの計測結果と併せて検討すると、ラ ップ側の外型枠内表面に設置した振動デバイスの充填が 確認されたのは、吹上げ口近傍に設置した圧力計(No.1) の値が 30 kPa の時点であった。この値は, 覆工巻圧分の コンクリート自重のおよそ4倍に相当する値である。こ のことから、ラップ側は 1,2 台目で概ね充填されるが、 打込みの早い段階で完全に充填されることはなく、スパ ン全体にコンクリートが充填し、コンクリート自重の 4 倍の圧力が作用した段階で完全充填することわかった。

4. 硬化コンクリートの品質評価

覆工天端部のコンクリート(4,5台目のコンクリート) は、バイブレータによる締固めが困難であるものの、吹 上げ口からの圧入により、押し出されながら充填してい くことがわかった。一方, 肩部のコンクリート (1~3 台 目のコンクリート)は、バイブレータで締固めを十分に 行えるものの、コンクリートを長距離流動させて充填さ れていくこととなる。これら締固めの程度や充填性状の 違いがコンクリートの品質に与える影響について、解析 および試験により検討を行った。

4.1 粗骨材分布

(1) 画像解析による粗骨材分布の算出手法

コンクリート中の粗骨材の分布状況を,硬化コンクリ ートの切断面の画像解析により評価した。

天端部と肩部のコンクリートの流動による影響を検 証するために、粗骨材分布量の算出は、写真-5に示す

図-4 コンクリート充填圧力経時変化

写真-5 コア供試体採取箇所および粗骨材量解析断面

図-5 画像解析による粗骨材成分の判別

6つの切断面(切断面1~6)で行った。切断面毎に20 cm ×20cmの領域を6箇所(図-5参照)選定し、その領域 内に占める粗骨材量を画像解析により算出した。画像解 析は、断面画像のモルタル成分と粗骨材成分とを色彩に より判別し、粗骨材成分を抽出するアルゴリズムとなっ ている4)。抽出した粗骨材成分の解析画像領域内での割 合を粗骨材量としている。図-5に画像解析結果の一例 を示す。

(2) 粗骨材分布の算出結果

表-4に、画像解析による粗骨材量の算出結果を示す。

ここで、ラップ側からつま側に向かって左側の肩部を肩 部A,右側を肩部Bと呼ぶこととする。配合表の数値か ら算出した粗骨材量は34.5%で、各切断面の粗骨材量の 平均値との差は最大でも3.9%であった。このことから、 スパン全体における粗骨材量のばらつきは少なく、良好 な品質であると言える。

切断面毎の粗骨材量のばらつきに与える影響を評価 するために、それぞれの切断面で標準偏差を算出した。 天端部での標準偏差は吹上げ口からの距離によらず値の 変化は見られなかった。これは、天端部のコンクリート は流動させるというよりも, 吹上げ口から押し出されな がら充填していくため (圧入), 吹上げ口から遠い位置で 充填されても、コンクリート中の粗骨材が分離しなかっ たと考える。一方, 肩部の標準偏差に関しては, 肩部 A は吹上げ口からの距離が近い切断面 1 (スパン中央部) で値が大きくなり, 肩部 B は吹上げ口からの距離が遠い 切断面 6(つま側) で値が大きくなった。肩部のコンク リートはバイブレータで締め固め、流動させながら充填 していくため、測定箇所により標準偏差の値が変化した と考えられる。但し、肩部 A と肩部 B で流動距離に応じ た標準偏差の大小は異なっており、吹上げ方式という特 殊な打込み条件下においては,流動距離の長短が粗骨材 のばらつきに影響を及ぼすとは一概に言えないことを示 している。今後, 肩部の粗骨材のばらつきについて, よ り詳細に検討を進めていく必要があると考える。

4.2 圧縮強度(σ28)

コンクリートの圧縮強度に及ぼす影響を評価するために、コア供試体(φ100)を採取し、圧縮強度試験(σ28) を行った。写真-5に示す9箇所から、2本ずつ計18本の供試体を採取した。2本ずつとしたのは、近接して2本のコア(高さ350 mm)を採取し、高さ200 mmの供試体を上側と下側で作成することで、覆エコンクリートの上面側と下面側の品質の差異を見るためである。

表-5に試験結果を示す。計測値は肩部と天端部ごと にまとめ、それぞれの箇所の平均値は 30 N/mm²以上と なった。天端部のコンクリートは、締固めを十分には行 えていないが、圧力計の計測値で最大 70 kPa まで加圧充 填し、高い圧力下で硬化したため、高い強度を発現した と考えられる。肩部の圧縮強度については、肩部 B に対 して肩部 A の平均値は 2.7N/mm²大きい値となった。表 -4の粗骨材量から、肩部 A はモルタル分が多くなって おり、この値の差異が圧縮強度の大きさに影響を及ぼし たものと考えられる。また、標準偏差に関しては、いず れの箇所も小さい値であり、全体的に均質なコンクリー トであると判断できる。

表-4 画像解析による粗骨材量

			標準						
		1	2	3	4	5	6	平均	偏差
肩部 A	切断面1	30.1	30.7	37.6	37.3	26.4	28.4	31.8	4.26
	切断面 2	34.1	28.6	38.4	31.6	32.7	30.7	32.7	3.07
天端部	切断面3	39.3	38.4	34.5	33.6	33.5	35.5	35.8	2.27
	切断面4	42.1	37.6	41.2	39.1	36.4	33.7	38.4	2.85
肩部 B	切断面 5	37.1	35.0	43.7	36.2	39.2	36.7	38.0	2.85
	切断面6	39.6	37.8	32.1	25.4	39.4	31.3	34.3	5.15

表-5 圧縮強度(σ28)

	圧縮強度 [N/mm ²]								
	平均值								
肩部 A ①~③	37.9	35.3	35.1	33.8	31.9	32.9	34.5	1.92	
天端部 ④~⑥	28.3	32.3	31.6	33.8	31.9	34.5	32.1	1.96	
肩部 B ⑦~⑨	32.9	34.8	29.6	30.3	31.6	31.4	31.8	1.72	

表-6 テストハンマー強度

		テス	トハンマー	/mm ²]	海 滩/61 羊	
				平均值	悰凖惼赱	
肩部 A	地山側	35.6	29.5	33.1	22.2	1.02
	内空側	32.5	30.5	32.3	52.5	1.95
天端部	地山側	32.4	27.8	31.9	22.1	0.15
	内空側	34.2	34.3	31.8	32.1	2.15
肩部 B	地山側	30.2	32.4	29.8	22.5	2.00
	内空側	35.1	35.1	32.1	32.3	2.09

表-7 単位容積質量

	単位容積質量 [kg/m³]								
	平均值								
肩部 A ①~③	2314	2368	2323	2271	2331	2325	2322	28.3	
天端部 ④~⑥	2341	2317	2314	2303	2276	2234	2297	34.4	
肩部 B ⑦~⑨	2307	2333	2302	2307	2320	2312	2313	10.4	

表-8 超音波伝播速度

	超音波伝播速度 [m/s]								
	平均值								
肩部 A ①~③	4099	4219	4139	4002	4181	4154	4132	68.8	
天端部 ④~⑥	4072	4172	4065	4016	3962	4024	4052	65.0	
肩部 B ⑦~⑨	4116	4081	4063	3996	4067	4179	4084	55.5	

4.3 テストハンマー強度

非破壊試験により測定されるテストハンマー強度を, コア供試体採取箇所と同等の位置の地山側と内空側のそ れぞれの面で計測した。テストハンマー強度の測定は土 木学会基準 JSCE-G504-2007 に準拠した。試験時の材齢 は18日で,補正係数を掛けて材齢28日の強度を推定し ている。

テストハンマー強度の計測結果を表-6に示す。計測 値は、コア供試体の圧縮強度試験の結果と同様に、肩部 と天端部ごとにまとめた。コア供試体の圧縮強度試験結 果と比較すると、平均値は圧縮強度と同程度あり、最も 誤差が大きい肩部 A との差は 2.2 N/mm²程度であった。 標準偏差に関しては、圧縮強度に対してテストハンマー 強度の方が大きな値を示す傾向となっているが、テスト ハンマー強度の標準偏差の最大値は 2.15 N/mm²であり、 品質を評価する上では許容範囲内である。

以上より,非破壊試験であるテストハンマー強度の測 定結果とコア供試体の圧縮強度試験結果は同程度の値を 示し,テストハンマー強度からも全体的に均質性を有し ていることを確認できた。

4.4 単位容積質量・超音波速度

単位容積質量の測定結果を表-7に示す。配合表での 単位容積質量は2295 kg/m³であり,天端部および肩部の 計測結果の平均値と比較しても,その差は1.2%と小さ い。標準偏差に関しては最大で34.4 kg/m³で,平均値に 対して1.5%程度である。

超音波伝播速度の測定結果を表-8に示す。超音波伝 播速度に関しても、平均値および標準偏差ともに肩部と 天端部との値の差は小さい。

以上の測定結果から,コンクリートの密実性に関して もスパン全体にわたって均質で,良好であることを確認 した。

5. まとめ

本稿は、吹上げ方式による打ち込まれる覆エコンクリ ート天端部の充填挙動と品質に関して、実物大模擬型枠 を用いた実験により得られた知見をまとめたものである。 本実験を通じて、以下の(1)~(4)のことがわかった。

- コンクリートを着色して打ち込むことで、コンクリートの充填状況を詳細に把握することができた。
- (2) コア供試体による圧縮強度等の計測結果から、コン クリートの流動による品質の低下は見られなく、ば らつきも許容範囲内であった。また、非破壊試験で あるテストハンマー強度は圧縮強度試験結果と概ね 同様の傾向を示し、非破壊検査からも良好な品質で あることを確認できた。
- (3) 天端部のコンクリートは,従来の吹上げ方式で実施 される圧入により,全体的に良好な品質を確保でき ることを確認した。
- (4) 画像解析による粗骨材分布の検討から、粗骨材量は 天端部と比較して肩部でばらつきが大きくなる傾向 がみられた。ただし、肩部のばらつきの原因につい てはより詳細な検討が必要とされる。

参考文献

- 土木学会:トンネル標準示方書 [共通編]・同解説
 / [山岳工法編]・同解説, p.196, 2016
- 2) 土木学会:トンネルライブラリー12 山岳トンネル 覆工の現状と対策, p.24-25, 2002.9
- 金子稔,安田正雪,末岡英二,坂井孝:締固め検知 機能を付加したコンクリートの充填検知システム の開発,コンクリート工学年次論文報告集,Vol.31, No.1, pp.2077-2082, 2009
- 4) 野間康隆,小池悟:画像解析を用いたコンクリート 部材の切断面の粗骨材分布の計測に関する検討,土 木学会第72回年次学術講演会講演概要集, pp.1881-1882,2017.