論文 コンクリート用火山ガラス微粉末を用いたコンクリートの基本特性

友寄 篤*1·野口 貴文*2·袖山 研一*3·東 和朗*4

要旨:標準化されることが決定した火山ガラス微粉末について,異なる方法で製造された BET 比表面積が異なる6種類を用い,コンクリートとしての強度・流動性・耐久性に関する検討を行った。その結果,W/B=20%では10%置換すると BET 比表面積 12m²/g 以上の微粉でシリカフュームと同等の性能を示し,W/B=50%では25%置換すると BET 比表面積 3m²/g 程度の粗粉でフライアッシュ II種品と同等の性能を示した。中性化抵抗性と凍結融解抵抗性については 20%置換まで普通コンクリートと同等の結果が得られ,塩分浸透抵抗性については,10%置換で優れた性能を示した。

キーワード:火山ガラス,ポゾラン反応,混和材,圧縮強度,流動性,耐久性

1. はじめに

ポゾラン反応性を持つ産業副産物の混和材利用は、環 境負荷の低減およびコンクリートの耐久性向上にとって 重要であるが、超高強度コンクリートの製造に必須であ るシリカフューム(以下, SF)は国内消費の全量を輸入 に頼っている。筆者らは、南九州に堆積し膨大な埋蔵量 を誇る入戸火砕流堆積物(入戸シラス)の乾式比重選別 による全量活用に関する研究を進めているが、選別され た純度の高い火山ガラス質を平均粒径 1µm 程度まで粉 砕すると、SFのJISの活性度指数の基準値を満たし、よ り高置換でさらに強度を発現し、W/B=20%のコンクリー トでは SF より少ない化学混和剤量で同等以上の強度と スランプフローを得られることを示した^{1),2)}。全国に堆 積する火山噴出物からエアテーブルと呼ばれる乾式比重 選別装置と粉砕機を用いた純国産の高性能混和材製造と その市場展開への可能性が認められ、2017年7月には新 市場創造型標準化制度を活用して「コンクリート用火山 ガラス微粉末」として標準化が行われることが決定した。

しかし,混和材としてのコンクリート実験は少なく, 二次粉砕機に用いたジェットミルは事業化するには消費 電力が大きく処理量が少ない。そこで,本研究では実用 化も想定した複数の方法で製造された異なる粉末度の火 山ガラス微粉末を用いてコンクリート試験を行う。水結 合材比 20%と 50%の 2 水準で強度及び流動性を副産物混 和材と比較し,約 60%ではセメント単味と比較した基本 的な耐久性試験も行い,その結果を副産物混和材と比較 考察することで,火山ガラス微粉末を用いたコンクリー トの基本特性全般を明らかにすることを目的とする。

本研究では、粉砕方法や粉末度を限定せずに、火山噴 出物を原料とし、アルミノけい酸塩ガラス(火山ガラス) を主成分とした微粉末を火山ガラス微粉末とする。

2. 実験概要

2.1 使用した火山ガラス微粉末の製造方法

本研究では鹿児島県鹿屋市申良町の採掘業者より前処 理なしの入戸シラスを取り寄せ,5mmのふるいを通過し た粒分を原鉱とした。既報²⁾と同様に,含水率1%以下と した原鉱からエアテーブルで分離回収した火山ガラス質 (S80)を原料とし,ローラミルにより粉砕した微粉末 (以下,Rとする)をジェットミルで二次粉砕しバグフ ィルタに回収される微粉(RJF),サイクロンに回収され る粗粉(RJC)を使用した。以下,バグフィルタ回収品を 微粉,サイクロン回収品を粗粉とする。また,Rを気流 分級機により分級した微粉(RAF)と粗粉(RAC),Rを 汎用サイクロンにより分級した微粉(RGF)と粗粉

(RGC),これらの微粉3種類と粗粉3種類の合計6種 類の火山ガラス微粉末を用いた。それぞれの火山ガラス 微粉末の製造工程と回収率を図-1に示す。

*1 東京大学大学院 工学系研究科建築学専攻学術支援専門職員 工修 (正会員) *2 東京大学大学院 工学系研究科建築学専攻教授 工博 (正会員)

*3 鹿児島県工業技術センター 地域資源部シラス研究開発室長 工博 (正会員)

*4 (株) プリンシプル 代表取締役

表-1 火山ガラス微粉末の物性

R の基本物	性		火山ガラス微粉末の基本物性							
密度(g/cm3)	2.36		BET	活性周	度指数					
ガラス率 (%)	88.6		比表面積	JIS A 6207	JIS A 6201					
SiO ₂ (%)	73.7		(m^2/g)	附属書 C(%)	附属書 C(%)					
Al ₂ O ₃ (%)	12.4	RJF	16.1	98(7d) / 105(28d)	-					
Fe ₂ O ₃ (%)	1.75	RJC	4.2	97(7d) / 100(28d)	-					
MgO (%)	0.35	RAF	15.2	100(7d) / 100(28d)	-					
K ₂ O (%)	3.86	RAC	5.1	-	76(28d) / 92(91d)					
Na2O3 (%)	3.86	RGF	12.0	101(7d) / 103(28d)	-					
Ig.loss (%)	2.25	RGC	3.6	-	72(28d) / 89(91d)					

表-2 比較用混和材の基本物性

	BET 比表面積: 16.0m ² /g
	活性度指数:97% (7日),109% (28日)
SF	SiO2: 93.76%, MgO: 0.58%, SO3: 0.27%,
	強熱減量:1.91%
	密度:2.25g/cm ³
	ブレーン比表面積: 3910cm ² /g,
	BET 比表面積:1.4m ² /g(実測値)
ГА	活性度指数:82% (28日),97% (91日)
FА	フロー値比 : 111%
	SiO2:64.9%,湿分:0.2%,強熱減量:1.7%
	密度:2.28g/cm ³

-			
		物性など	記号
7	サイント	普通ポルトランドセメント	Ν
B	ピメンド	低熱ポルトランドセメント	L
摇	混和材	火山ガラス微粉末6種, SF, FA	SCM
石灰石	砕砂	大分県津久見産, 密度 2.67g/cm ³	S1
硬質研	砂岩砕砂	鹿児島県日置市産, 密度 2.62 g/cm ³	S2
硬質研	沙岩砕石	鹿児島県日置市産, 密度 2.64 g/cm ³	G1
石灰石	砕石	大分県津久見市産, 密度 2.70 g/cm3	G2
高性能	能減水剤	超高強度用,ポリカルボン酸系	SP1
高性的	能 AE 減水剤	ポリカルボン酸系	SP2
AE 洞	成水剤	高機能タイプ	SP3
AE 斉	J	アルキルエーテル系	AE

表-3 使用材料

					表-4	調合	·条件
	()	セ、	1 ³)	(%			

Series	W/B (%	メント	W (kg/m	SCM/B (9	細骨材 重量比	比較 混和材	化学 混和剤	目標 Air (%)	目標 スランプ (cm)
Ι	20	L	160	10	S1=4 S2=6	SF	SP1	2.0 ± 1.0	フロー 65±10
П	50	N	167	25	S1=2.5 S2=7.5	FA	SP2 + AE	5.0 ± 1.0	スランプ 18±2.5
Ш	61.2	N	183	0 10 20	S1=2.5 S2=7.5	-	SP3 + AE	5.0 ± 1.5	スランプ 18±2.5

表-5 RJFの基本物性

	ţ	BET 北表面積 (m ² /g)	ガラス率(%)	。 密度 (g/cm ³)	SiO ₂ (%)	TiO ₂ (%)	Al ₂ O ₃ (%)	Fe ₂ O ₃ (%)	MnO(%)	MgO (%)	CaO(%)	K2O(%)	Na2O(%)	P2O5(%)	Ig.loss(%)
--	---	------------------------------------	---------	------------------------------	----------------------	----------------------	------------------------------------	------------------------------------	--------	---------	--------	--------	---------	---------	------------

2.2 水結合材比 20%と 50%のコンクリート試験

1 ロット2トンの原鉱より製造した6種類の火山ガラ ス微粉末と比較混和材として SF とフライアッシュⅡ種 品(以下, FA)について,2水準の水結合材比で実験を 行った。一次粉砕品Rの密度と主な組成および使用した 6種類の火山ガラス微粉末の物性を表-1に,成績表に よる比較混和材の物性を表-2に示す。なお,前報同様 に重液分離により密度 2.4g/mm³以下をガラスとしてガ ラス率を測定し,活性度指数も前報同様に細骨材に石灰 砕砂を用いた JIS A 6207 附属書 C 準拠および陸砂を用い た JIS A 6201 附属書 C 準拠の予備試験の結果とした。

練混ぜには強制二軸練りミキサーを用い、SFとFAの JISの活性度指数の試験方法を参考にW/B=20%では置換 率10%とし、W/B=50%では置換率25%とした。使用材料 と調合条件を表-3,表-4に示す。W/B=20%の比較混和 材はSFとし、目標空気量は2.0%±1.0%、目標スランプ フローは65cm±10cmとした。W/B=50%の比較混和材は FAとし、目標空気量は5.0%±1.5%、目標スランプは18cm ±2.5cmとした。目標空気量とスランプを満たす様に化 学混和剤量を調整し、フレッシュ性状としてスランプ (W/B=50%のみ)、スランプフロー、空気量、コンクリー ト温度、50cm通過時間とフロー停止時間(W/B=20%の み)を試験した後に圧縮強度供試体(φ100×200mm円柱) を作製した。標準養生材齢1週、4週、13週で圧縮強度 試験を実施した。

2.3 水結合材比 61.2%の耐久性用コンクリート試験

火山ガラス微粉末が耐久性に与える影響を検討するた めに前節とは異なるロットの原鉱から製造した表-5 に 示す RJF を用いた。調合は単位水量 185kg/m³程度,単位 セメント量 300kg/m³以下とし,水結合材比約 60%となる 様に定め,混和材置換率を 0%, 10%, 20%とした。目標 空気量は 5.0%±1.5%,目標スランプは 18cm±2.5cm と した。使用材料と調合条件を表-3,表-4 に示す。強制 二軸練りミキサーを用い,スランプ,スランプフロー, 空気量,コンクリート温度を試験した後に圧縮強度試験 および浸漬法による塩化物イオンの見掛けの拡散係数試 験用の φ100×200mm の円柱,促進中性化試験および凍 結融解抵抗性試験用の 100×100×400mm の角柱供試体 を作製した。円柱供試体にて標準養生材齢 1 週, 4 週, 13 週で圧縮強度試験を実施した。

促進中性化試験は JIS A 1153「コンクリートの促進中 性化試験方法」に準拠した。角柱試験体を用い,前養生 は脱型後材齢4週まで20℃水中養生,その後材齢8週ま で20℃60%RHの恒温恒湿室に静置した。炭酸ガス濃度 5%,20℃,湿度 60%RHの中性化促進試験装置を用い, 促進材齢1,4,8,13,26週にて中性化深さを測定した。

塩化物イオン浸透抵抗性は「浸漬によるコンクリート 中の塩化物イオンの見掛けの拡散係数試験方法(案) (JSCE-G572-2003)」に準拠した。円柱供試体の上下25mm をカットして,脱型後材齢4週まで20℃水中養生を行い, 打ち込み側の円形1面を残しエポキシ樹脂で被覆した供 試体を温度20℃,濃度10%の塩化ナトリウム水溶液中に 202 日間浸漬した。全塩化物イオン分布の測定は,開放 面からの深さ中心が5,20,35,50mmの位置となるよう に厚さ10mmの円盤型試験片を切り出し,JISA1154「硬 化コンクリート中に含まれる塩化物イオンの試験方法」 に準拠し、150μm以下に粉砕した試料を、イオンクロマ トグラフ法により塩化物イオンを定量した。

耐凍結融解特性の試験方法および測定方法は JIS A 1148「コンクリートの凍結融解試験方法」に準拠した。 角柱試験体を用い,前養生は型枠を取り外し材齢4週ま で20℃水中養生とした。試験方法はB法とし,凍結温度 を-18℃,融解温度を5℃とした。1サイクルを4時間と し,36サイクルを超えない間隔で300サイクルまで13 回測定した。測定項目は緒方らの方法³⁾を参考に超音波 非破壊試験機を用いて超音波伝搬時間を測定した。

3. 実験結果と考察

3.1 フレッシュ性状

W/B=20%のフレッシュ性状と化学混和剤添加率を表 -6 に、練混ぜ時間を図-2 に示す。いずれの火山ガラ ス微粉末においても SF より少ない添加率で同等以上の スランプフローが得られた。入戸シラスに含まれる風化 した粘土質の微粉は、モルタルフローを著しく低下させ る¹⁾ことが明らかになっているが、エアテーブルによる 選別でこれが除去されている結果と言える。微粉3種類 は SF に比べると 50cm 通過時間は長いものの, 十分に実 用的なコンシステンシーを得られ、SF の規格値である BET 比表面積 15.0m²/g を下回る微粉の RGF も RJF と RAF と同等のフレッシュ性状を示している。汎用サイク ロン分級された RGF は, 図-1 から他の方法による微粉 回収率に比べ10%ほど多く、BET比表面積も小さいこと から、大きめの粒子もバグフィルタ側に混入したと考え られる。しかしセメント粒子間の空隙を埋める微粒子が 十分に含まれているために,結合材充填率を高め同等の フレッシュ性状を得られたと推測される。

粗粉3種類では50cm 通過時間が微粉より長くなり, セメントスコップではかなりの抵抗を感じる程の粘りと ダイラタンシーを示した。粗骨材を投入する前のモルタ ルにおける練混ぜに必要な時間も微粉とSFに比べると 2倍以上の時間が必要であった。今回の結果から W/B=20%程度のフレッシュコンクリートでは,BET比表 面積 12 m²/g 以上の微粉では流動性改善効果があり, BET 比表面積 5 m²/g 以下の粗粉では流動性改善効果は 低いと判断される。

W/B=50%のフレッシュ性状と化学混和剤添加率を表 -7 に示す。全ての火山ガラス微粉末で同一の練混ぜ時 間であった。微粉では目標スランプを得るための高性能 AE 減水剤添加率は FA より多く,粗粉では同一化学混和 剤添加率で目標スランプと空気量が得られた。また火山 ガラス微粉末を用いるとスランプフローは15%ほど小さ く,降伏値の高いフレッシュコンクリートとなった。粒

表-6 W/B=20%のフレッシュ性状

SCM の種類/	スランプ	空気量	CT	50cm	停止	SP1
BET 比表面積	フロー	(%)	(°C)	通過	時間	添加率
(m ² /g)	(cm)			(秒)	(秒)	(B×wt%)
RJF/16.1	74.0×74.8	2.1	26	5.3	97	1.40
RAF/15.2	73.2×75.0	2.1	27	5.8	118	1.40
RGF/12.0	73.8×72.2	1.8	26	5.5	92	1.40
RJC/4.2	74.0×73.8	1.8	27	6.3	95	1.30
RAC/5.1	72.4×71.1	1.9	27	6.8	102	1.20
RGC/3.6	69.8×68.2	1.9	27	8.3	103	1.20
SF/17.7	69.0×68.0	2.9	26	4.3	79	1.60

表-7 W/B=50%のフレッシュ性状

SCM の種類/	スランプ	スランプ	空気量	CT	SP2	AE
BET 比表面積	(cm)	フロー	(%)	(°C)	添加率	添加率
(m^2/g)		(cm)			(B×wt%)	(B×wt%)
RJF/16.1	18.5	30.0×29.5	5.8	24	1.10	0.40
RAF/15.2	19.5	32.5×33.0	5.8	24	1.10	0.40
RGF/12.0	19.0	30.5×30.0	5.6	24	1.10	0.40
RJC/4.2	19.5	31.0×32.0	5.8	23	0.83	0.40
RAC/5.1	19.0	30.0×29.0	5.7	23	0.83	0.40
RGC/3.6	18.0	29.0×28.5	5.5	23	0.83	0.40
FA/1.4	20.0	36.0×35.0	5.9	24	0.83	0.40

表-8 W/B=61.2%のフレッシュ性状

SCM の種類/ BET 比表面積 (m ² /g)	スランプ (cm)	スランプ フロー (cm)	空気量 (%)	CT (℃)	SP3 添加率 (B×wt%)	AE 添加率 (B×wt%)
RJF-0%	18.0	31.0×30.5	5.3	21	0.85	0.40
RJF-10%	17.0	28.0×29.0	5.8	21	1.03	0.36
RJF-20%	13.0	-	4.9	21	1.20	0.40
RJF-20% (SP2 後添加)	17.5	28.5×29.0	5.1	21	1.48 (合計)	0.40

子が球状をしている FA に比べ,粉砕物である火山ガラ ス微粉末の粒子は角張って¹⁾いる影響が考えられる。し かし,BET 比表面積 5 m²/g 以下の粗粉では FA 同等の十 分に実用的な粘性を示し,今回の結果からは W/B=50% 程度のフレッシュコンクリートではフロー値比 111%の FA II 種品と同等の化学混和剤量で目標スランプと目標 空気量を得られる結果と言える。

W/B=61.2%の結果を表-8 に示す。20%置換では目標 スランプを満たさなかったが,耐久性試験を主目的とし たため,AE 減水剤を後添加してスランプを調整した。セ メント単味のコンクリートと同等のスランプを得るため に RJF 置換率の増加に伴い高性能 AE 減水剤添加率は増 え,スランプフローも W/B=50%と同様に小さくなった。

本研究の範囲では W/B=50%以上の流動に十分な水が ある調合では,BET 比表面積 12 m²/g 以上の微粉は置換 率 10%以上の範囲では置換するほどに目標スランプを得 るための高性能 AE 減水剤量は増える傾向を示した。実 測した BET 比表面積から FA と粗粉に比べると,微粉の 粒子は小さく既報¹⁾同様に平均粒径 1.0µm 程度と推測さ れ,粒子の凝集による拘束水量も多くなり,高性能 AE 減 水剤添加率が増えたと推測される。平均粒径 0.1µm 程度

とされる SF を用いた W/B=35~50%, 18cm±1.0cm を目 標スランプとしたコンクリート実験を行なった研究⁴⁾で は,置換率0%,4%,8%の範囲で4%の場合に0%と8% より高性能 AE 減水剤量が少なくなる傾向を示している。 W/B=50%程度の流動性改善という観点からは,微粉での 置換率10%以下での検討を今後の課題とする。

3.2 強度試験結果

W/B=20%の圧縮強度を図-3に示す。材齢4週までは 火山ガラス微粉末でSF同等以上,材齢13週では同等以 下の強度となった。W/Cが一定であれば空気量1%の増 加によって強度は4~6%減少する⁵⁾とされるが,SFのフ レッシュ性状では火山ガラス微粉末に比べると空気量が 1%ほど多く,強度減少を5%としても,材齢4週までは 概ね同等の強度と言える。W/B=50%の圧縮強度を図-4 に示す。いずれの材齢でも微粉ではFAより2割ほど大 きくなり,粗粉ではFA同等という結果であった。表-

1 に示すモルタル活性度指数の予備試験では、W/B=30% の28 日活性度指数は105%以下、W/B=50%の91 日活性 度指数は92%以下となっており、表-2 に示した SF の 109% (28 日)、FA の97% (91 日) に比べると約5%以上 小さい結果であったが、モルタルと同一置換率でのコン クリートではその差は見られなかった。

材齢と強度の関係を図-5 に示す。W/B=20%の材齢4 週から13週におけるSFの強度増進はいずれの火山ガラ ス微粉末より大きくなる結果であるが、材齢7日から28 日では同程度の傾きを示し、W/B=50%では FA と火山ガ ラス微粉末の材齢経過に伴う強度発現性には同様の傾向 が認められた。図-6 に W/B=20%における火山ガラス微 粉末の BET 比表面積と SF との相対強度比を示す。材齢 1 週で最も BET 比表面積と良い相関があり 3 m²/g 程度 でも SF 同等の強度, 12m²/g 以上では SF 同等以上の強 度となるが、材齢経過につれ近似直線の傾きと相関係数 はいずれも小さくなり、材齢4週ではいずれの比表面積 でも SF と同等の強度, 材齢 13 週では 15 m²/g 以上でも SF 同等以下の強度となった。10%置換した W/B=22%の ペーストのシリカフュームの反応率は材齢7日で大きく 増加し以降はゆるやかになる。。SF とはガラス率や化学 組成が異なり強度発現メカニズムが異なる可能性もある が、火山ガラス微粉末の比表面積に相関した材齢1週で の強度試験結果は、反応に関係する比表面積に応じた強 度発現を初期材齢では示し、材齢の進行に合わせて小さ な比表面積では遅れて反応が進行した可能性が考えられ

0.0

る。しかし SF との強度比は 4 週までは 100%以上で,13 週では下回った結果は、反応だけでなく空隙率などを含 めた要因が考えられ、材齢と強度発現メカニズム解明に ついては今後の課題とする。

図-7にW/B=50%におけるFAとの相対強度比を示す。 W/B=20%と比較すると、材齢13週で若干のばらつきが あるものの火山ガラス微粉末のBET比表面積とFA強度 比との間に良い相関が見られる。W/B=40%で20%置換し たペーストにおける既往研究⁷⁾では、フライアッシュII 種品の反応率は材齢7日で10%程度、その後材齢555日 では42%~53%となるとされ、ガラス相量やその化学組 成、粉末度が影響することが明らかになっている。6種 類の火山ガラス微粉末では粉末度以外に大きな差はない ため、粉末度と関係が高いBET比表面積に応じた強度発 現が得られたと考えられるが、材齢13週のFA強度比が やや低下する傾向を示したことから、今後の長期材齢に おける観察を続け、強度発現メカニズムについても今後 の課題とする。

3.3 耐久性試験結果

W/B=61.2%の圧縮強度を図-8に示す。置換率 20%で は化学混和剤を後添加しているものの、材齢 91 日まで RJF 置換量が 20%までは強度が上がっている。促進中性 化試験の結果を図-9 に示す。促進材齢の平方根と中性 化深さはほぼ線形にあることが確認され、図に示す線形 近似した直線の式から、中性化速度係数はセメント単味 より 10%置換で僅かに小さく、20%置換では 8%大きく ほぼ同程度の結果を示した。強度試験の結果から考える と、ポゾラン反応により水酸化カルシウムは消費されて いると考えられるが、反応による緻密化の影響が大きい と推測される。W/B=60%においてフライアッシュⅡ種品 を15%および25%置換した促進中性化試験では、中性化 速度係数は 15%置換では 50%以上, 25%置換では 100% 以上それぞれ大きくなると報告されている 8)。僅かに W/B が異なり置換率も同一ではないが、火山ガラス微粉 末 RJF は FA に比べると中性化抵抗性がかなり高い水準 にあると見なせる。

コンクリート中の全塩化物イオン濃度分布の結果を図 -10 に示す。10%置換では表面の濃度は 0%に比べ僅か に高くなり、コンクリート内部へ塩化物イオンが浸透し にくくなったことで表層部に蓄積されたと考えられるが、 20%置換では表層部への浸透も抑制するほどの結果とな った。図に示す見掛けの拡散係数は 10%置換では約 1.5 割、20%置換では約1割に低下し、火山ガラス微粉末 RJF を混和することで、優れた塩分浸透抵抗性が得られるこ とが分かった。シリカリュームを用いた W/B=35~50%、 置換率 0%、4%、8%の同様の浸せき期間2年の実験⁹で は、水結合材比ごとに若干のばらつきはあるものの見掛

70

けの拡散係数は置換率4%で4割程度,置換率8%では2 割程度まで低下した結果を示しており,火山ガラス微粉 末でもより低い置換率でも効果が期待できる。

超音波電波速度の結果を図-11 に示す。火山ガラス微 粉末を置換したコンクリートでは超音波伝播速度が 5% ほど大きいという結果であり、動弾性係数も大きいと考 えられる。いずれの置換率でも 300 サイクルまで特に低 下は認められなかった。空気量を十分に確保すれば、火 山ガラス微粉末を混和しても普通コンクリートと同様に 凍結融解による劣化は生じないと考えられる。

4. まとめ

本研究で得られた火山ガラス微粉末を用いたコンクリ ートに関する知見を以下に示す。

(1) 流動特性について

W/B=20%程度では BET 比表面積 12 m²/g 以上で流動 性改善効果があり, BET 比表面積 5 m²/g 以下では改善 効果は低いと判断される。

W/B=50%程度以上では,BET比表面積12m²/g 以上では10%を超えて置換すると目標スランプを得るための化 学混和剤量は増えるが,BET比表面積5m²/g 以下では 25%置換でフライアッシュII種品と同程度の化学混和剤 量で目標スランプと目標空気量を得る。

(2) 強度特性について

W/B=20%程度では、材齢1週でBET比表面積と強度 に相関が見られ、5m²/g程度でSF同等の、12m²/g以上 でSF同等以上の強度発現性能が認められる。材齢4週 ではBET比表面積と強度の相関は低くなり、SF同等の 強度発現性能が認められる。材齢13週ではBET比表面 積との相関はさらに低くなりSF同等以下の強度となる。

W/B=50%程度以上では BET 比表面積 3 m²/g 程度でフ ライアッシュ Ⅱ 種品と同程度の強度が得られ, 12 m²/g 以上では強度は 2 割程度大きく, 材齢 91 日まで BET 比 表面積と強度には相関が見られる。

(3) 耐久特性について

中性化抵抗性は20%置換したコンクリートでは,普通 コンクリートと同程度を示し,塩化物イオン浸透抵抗性 は10%置換で十分な改善効果が得られた。耐凍結融解性 については、普通コンクリートと同様に十分な空気量が 得られれば劣化は生じないと考えられる結果が得られた。

参考文献

- 友寄篤,野口貴文,袖山研一,東和朗:入戸シラス から乾式比重選別した火山ガラス質に関する基礎 的研究,コンクリート工学年次論文集, Vol.39, No.1, pp.151-156, 2017.7
- 袖山研一,友寄篤,野口貴文,東和朗:乾式比重選 別と粉砕によるシラスの建設材料への全量活用, 「材料」, Vol.66, No.8, pp.574-581, 2017.8
- 3) 緒方英彦,服部九二雄,高田龍一,野中資博:超音 波法によるコンクリートの耐凍結融解特性の評価, コンクリート工学年次論文集,Vol.24, No.1, pp.1563-1568, 2002
- 4) 嶋毅, 佐伯竜彦, 吉澤啓典, 山本佳城:シリカフュ ームコンクリートの塩分浸透抵抗性, セメント・コ ンクリート論文集, Vol.63, pp.414-420, 2009.3
- 5) 日本コンクリート工学協会:コンクリート技術の要点 07', p.57(2007)
- 6) 佐藤正己,梅村靖弘,小泉公志郎:シリカフューム を添加した低熱ポルトランドセメントの水和およ びケイ酸構造への水結合材比の影響,セメント・コ ンクリート論文集, Vol.65, pp.456-463, 2011.3
- 7) 大塚拓,森慎一郎,石川元樹,坂井悦郎:フライア ッシュの鉱物組成とポゾラン反応性,セメント・コ ンクリート論文集, Vol.63, pp.16-21, 2009.3
- 親本俊憲ほか:混合セメントを用いたコンクリートの耐久性能(その4 促進中性化試験結果),日本建築学会大会学術公園梗概集(関東), pp.713-714, 2015.9
- 9) 川原真一,佐伯竜彦,嶋毅,吉澤啓典:シリカフュ ームコンクリートの塩分浸透抵抗性および鋼材腐 食に関する基礎的研究,セメント・コンクリート論 文集, Vol.65, pp.360-367, 2011.3