報告 火害を受けたコンクリートの孔内局部載荷法による劣化評価に関す る基礎的研究

澤口 啓希*1・春畑 仁一*2・内田 慎哉*3・池田 憲一*4

要旨:「孔内局部載荷法」は、コンクリート構造物の物性(圧縮強度,静弾性係数)を深度方向に測定するこ とが可能な微破壊試験である。本研究では、加熱温度を変化させたコンクリート試験体において「孔内局部 載荷法」を実施し、火害を受けたコンクリートの深さ方向における劣化評価手法として適用可能性について 検討した。その結果、孔内局部載荷法は、受熱温度の違いにより生ずる物性変化を捉えており、劣化深さの 違いを把握できる可能性があることを明らかにした。

キーワード:コンクリート,劣化,火害,微破壊試験,孔内局部載荷法,劣化深さ,受熱温度

1. はじめに

コンクリートの劣化の一つに火災による劣化現象があ る。日本建築学会から、2015 年、「建物の火害診断およ び補修・補強方法指針・同解説¹⁾」が発行された。また、 日本コンクリート工学会では、同年、「高温環境下におけ るコンクリートの性能評価に関する研究委員会(委員 長:兼松 学 東京理科大学 教授)」が発足され、コンク リートの火害に関する機運が高まっている。

これらを受け、本研究では、加熱温度を変化させたコ

写真-1 孔内局部載荷試験装置の概要

ンクリート試験体において「孔内局部載荷法」を実施し, 火害を受けたコンクリートの深さ方向における劣化評価 手法としての適用可能性について検討した。

「孔内局部載荷法」は、構造物の深度方向に対するコ ンクリート性状の変化を把握するために開発した試験方 法であり²⁾,**写真-1**に示す載荷試験装置を用い、直径 42mm 以上でコア削孔した孔内においてコンクリートの 物性を測定する"微破壊試験"である。載荷試験装置は、 直径6mm 半球状の載荷先端を備えたゾンデ(直径40mm, 長さ270mm)および油圧ポンプ、データ収録装置(ノー トパソコン、アンプ)から構成される。本手法は、これ まで、河川樋門や砂防堰堤、橋梁、トンネルといった土 木構造物の施工不良や凍害等によるコンクリート構造物 の劣化深さの評価・診断に用いられてきた^{3),4}。

2. 試験概要

2.1 試験体

試験体は、図-1に示すように、長さ900mm、幅900mm、 厚さ300mmの直方体としたものを5体作製した。加熱 後の試験体の移動を考慮して、加熱面からかぶり(厚さ) 165mmの位置に用心鉄筋(異形棒鋼(呼び名:D13))を4 本配置した(図-1参照)。コンクリートは、生コン工場 で製造した呼び強度:24を使用した。コンクリートの使 用材料は、セメント:普通ポルトランドセメント(密度: 3.15g/cm³)、水:上水道水および上澄水、細骨材:佐賀 県小川島産海砂(表乾密度:2.56g/cm³、粗粒率:2.80) および京都府亀岡市産砕砂(表乾密度:2.64g/cm³、粗粒 率:2.85)、粗骨材:京都府亀岡市産砕石(表乾密度: 2.67g/cm³、実積率:58%)、混和剤:AE減水剤標準型 I 種である。コンクリートの配(調)合を表-1に示す。な お、フレッシュコンクリートの性状は、スランプ 8.5cm、

*1 川崎地質(株) 首都圏事業本部保全部 (正会員) *2 (一財)日本建築総合試験所 試験研究センター (正会員) *3 立命館大学 理工学部環境システム工学科講師 博士(工学) (正会員) *4 東京理科大学 研究推進機構総合研究員教授 博士(工学) 空気量 3.6%である。打設後,強度試験用の円柱供試体に ついては直ちに現場封緘養生を行い,材齢 28 日に JIS A 1108「コンクリートの圧縮強度試験方法」に基づき圧縮 強度試験を実施した。その結果,圧縮強度は 31.4N/mm² であった。一方,試験体は,室内気中養生した後,材齢 7 日で脱型し,加熱試験に供するまで屋内にて静置した。 なお,試験体5 体のうち加熱試験に供する 4 体について は,図-1 に示す A~C の 3 箇所に,加熱するコンクリ ート表面から 0, 25, 50, 100mm の位置に K 熱電対をそ れぞれ設置した。

図-1 試験体の形状および熱電対の設置位置

ビル日

	表-1	コンクリー	トの配(調)合
--	-----	-------	---------

W/C	s/a	単位重 (kg/m ⁺)					
(%)	(%)	W	С	<i>S1</i>	S2	G	Α
57.0	44.7	168	295	560	240	1023	2.950
W/C:水セメント比、 s/a :細骨材率、 W :水、 C :セメント、							

S1 および S2:細骨材, G:粗骨材, A:混和剤

2.2 加熱試験

試験体の加熱は図-2 に示すガス加熱炉を使用した。 試験体は, 天井スラブの加熱を想定し, 試験体の長さ 900mm, 幅 900mm の型枠面(有効加熱寸法:長さ 670mm ×幅 670mm) が炉内に接するように設置した。

加熱試験に供する試験体は計4体であり,火害による 劣化程度にバリエーションを設けるため,試験体ごとに 加熱温度をそれぞれ設定した。具体的には,都市ガス (46090kJ/m³)を熱源とし,ISO834 に規定する標準加熱曲 線に沿って炉内温度を上昇させ,図-1 に示すA~Cの コンクリート表面から0mmにある3本の熱電対でそれ ぞれ測定した温度の平均値が110,300,500,700℃とな るまで各試験体を加熱した。これらの温度を本研究では 加熱温度と呼ぶことにする。以上より,加熱温度のバリ エーションとしては4水準となる。いずれの試験体にお いても加熱温度を60分間保持し,その後にガスバーナー による加熱を終了した。加熱終了後,加熱炉側面の炉

図-2 加熱試験の概要

蓋を開放し、加熱面のコンクリート表面温度(加熱温度 を計測した3本の熱電対での平均値)が50~80℃になる まで加熱炉上に静置した。なお、加熱時の試験体材齢は、 110℃で334日、300℃で260日、500℃で218日、700℃ で295日である。

2.3 加熱試験中の炉内およびコンクリートの温度履歴

加熱温度が 700℃の場合の炉内温度およびコンクリートの温度履歴を図-3 にそれぞれ示す。図中に示す 0, 25, 50, 100mmの温度は,図-1に示す A~C に設置した同一深さ 3 本の熱電対でそれぞれ計測した温度の平均値である。図より,60分間にわたって設定した加熱温度700℃にて加熱できていることがわかる。また,この期間における図に示す A~C に設置した加熱面 0mm での温度差は,最大で 47℃であった。したがって,試験体の有効加熱範囲全面にわたって,設定した加熱温度にて概ね加熱されていたと推測できる。なお,その他の試験体にお

いても設定した加熱温度で加熱されており,温度差も25 ~83℃の範囲であった。

2.4 孔内局部載荷法

孔内局部載荷法は、加熱後の各試験体で図−4 に示す ○印の位置において直径 45.6mm で乾式によるコア削孔 をした後、各孔において試験体表面から深さ 130mm ま で、8~9 水準の深さについて実施した。なお、加熱試験 体との比較のため、加熱していない試験体からも、材齢 310 日にコア削孔を行い、同様の手順で試験を実施した。

各測定深度では、骨材や気泡等により生ずるばらつきの影響を低減させるため、ゾンデを円周方向に回転させ、同一深度において 6~10 点程度の測定を行った。

測定は, i) ゾンデを測定深度に設置, ii) 油圧ポンプに より載荷先端を孔壁に載荷, iii) 載荷時の貫入量と荷重 をデータ収録装置で収録, iv) 同一深度において i)~iii) を繰り返し行い 6~10 点程度のデータを取得, という手 順で実施した。測定結果は, 各測定点の荷重-貫入量曲 線の傾きから図-5 示すように「貫入抵抗値(kN/mm)」 を算出し,測定深度ごとに平均し,各深度のコンクリー ト物性の評価指標とした。

3. 試験結果

3.1 孔内局部載荷法

各加熱条件における,試験体の深さ方向の測定結果を 図-6. 図-7 に示す。加熱の影響による貫入抵抗値の低 下の判断は,既往の研究同様^の,加熱による影響を受け ていないと考えられる深さ 100mm 以深の値から概ね 20%低下した場合とした。なお,貫入抵抗値低下の閾値 に関しては検討課題とし,今後,データを蓄積した上で 決定する予定である。

試験の結果,未加熱の貫入抵抗値は試験孔Ⅱ表層と深

部に若干の違いが見られるものの,いずれの試験孔にお いても深度方向の値の変化はほとんど無いと言える。加 熱条件下の試験体では,いずれの試験孔においても 110℃および 300℃で深さ 20mm, 500℃で深さ 20mm~ 30mm, 700℃では深さ 40mm まで表層付近の貫入抵抗値 の低下が確認された。

なお、110℃試験体については、試験孔 I ~ Vのいずれ においても未加熱より貫入抵抗値が高い結果となった。

この他,試験体毎の試験結果を比較したところ,試験 孔位置の違いによる測定結果に大きな違いは特に見られ なかったことから,加熱炉バーナーからの距離の違いや 削孔位置の違いは試験結果には影響しないと言える。そ のため,同様の条件で加熱されたコンクリートであれば, 試験位置に影響されず,加熱範囲内において同等の試験 結果が得られると言える。

3.2 加熱温度と貫入抵抗値

各試験体では、前述の通り、コンクリート内部の温度 (受熱温度)を,試験体の表面、深さ 25mm、50mm、100mm に熱電対を設置して測定している。コンクリートの受熱 温度と貫入抵抗値との関係を表-2および図-8に示す。 受熱温度に対応する貫入抵抗値は、表面は深さ 10mmの 測定値、25mm は深さ 20mm と 30mmの平均値、50mm は深さ 50mmの測定値、100mm は深さ 90mm と 110mm の平均値をそれぞれ用いた。なお、受熱温度との比較は、 熱電対設置の近傍でコア削孔を行った試験孔 I ~ IIIで実 施している。

各深度の受熱温度は、加熱温度の違いにより異なり、 加熱温度が110℃では深さ25mmで90~95℃程度、50mm では65~70℃程度、100mmでは45~55℃程度、300℃で は25mmで190~220℃程度、50mmでは145~150℃程度、 100mmでは100~110℃程度、500℃では25mmで330~ 350℃程度、50mmでは190~300℃程度、100mmでは125 ~150℃程度、700℃では25mmで510~520℃程度、50mm では340~360℃程度、100mmでは160~180℃程度であ る。

貫入抵抗値と加熱温度との関係(図-8参照)は、受 熱温度の上昇とともに貫入抵抗値が低下する傾向であり、 既往の結果⁴⁾と同様に強い相関が確認され、孔内局部載 荷法によって、コンクリート表面の加熱温度に係わらず、 実際の受熱温度を捉えることができることを確認した。

図-8 貫入抵抗値と加熱温度との関係

なお,貫入抵抗値の低下量は,受熱温度 1℃に対して -0.01 程度であり,こちらも既往の結果⁶と同等程度の 値となった。

なお,火害の劣化評価において孔内局部載荷法を用い る場合には,火害を受けていない健全部または熱の影響 を受けていない深部の測定を行い,コンクリート表面か らの深さ方向の測定結果と比較することで,劣化深さの 特定が可能となると考えられる。

表-2 貫入抵抗値と受熱温度との関係

	加熱 温度 ℃	測定深度							
試験孔		表面 ^{※1}		25mm ^{**2}		50mm ^{**3}		100mm	
		コンク リート 温度	貫入 抵抗 ^{kN/mm}	コンク リート 温C	貫入 抵抗 ^{kN/mm}	コンク リート 温度	貫入 抵抗 ^{kN/mm}	コンク リート 温C	貫入 抵抗 ^{kN/mm}
1	未加熱	27	10.61	26	12.19	25	9.74	25	9.01
	110	125	8.29	92	13.21	72	12.49	46	15.00
	300	279	6.36	201	7.50	145	7.60	102	8.81
	500	477	5.90	356	9.23	188	10.86	125	10.92
	700	718	2.26	510	4.67	337	6.80	182	8.32
	未加熱	27	7.03	26	7.62	26	9.99	25	10.10
	110	103	10.53	90	12.98	65	15.53	46	14.04
2	300	324	5.01	218	6.91	150	7.49	101	7.06
	500	543	4.71	343	6.78	300	8.57	128	9.76
	700	705	2.01	508	4.71	359	7.06	164	7.92
3	未加熱	27	9.10	26	8.38	25	9.06	25	10.17
	110	126	13.06	94	13.41	72	12.58	55	14.42
	300	311	5.43	190	5.52	146	5.11	112	7.15
	500	512	5.01	333	6.69	257	7.06	153	7.29
	700	733	1.12	519	2.91	337	7.37	186	7.26

※1 貫入抵抗値は、深さ10mmの値

※2 貫入抵抗値は、深さ20mmと30mmの平均値

※3 貫入抵抗値は、深さ90mmと100mmの平均値

4. まとめ

本研究では、火害を受けたコンクリートの劣化評価へ の適用の可否を検討するため、加熱冷却後のコンクリー トを対象に「孔内局部載荷法」による測定を実施した。 本研究で得られた結論を以下に示します。

- (1) 孔内局部載荷法は、コンクリート中の深さ方向の測 定が可能なだけでなく、受熱温度の違いから生ずる 物性低下を捉えている可能性が極めて高い。
- (2) 加熱炉バーナーからの距離の違いや削孔位置の違い は試験結果には影響しないことから、同様の条件で 加熱されたコンクリートであれば、試験位置に影響 されず、加熱範囲内において同等の試験結果が得ら れると言える。
- (3) 以上のことから, 孔内局部載荷法は, 火害を受けた コンクリートの深さ方向の劣化評価手法として有効

な試験手法である可能性を示すことができた。

(4) なお,貫入抵抗値の低下の閾値については,要検討 であり,今後の研究課題である。

謝辞

本研究の一部は,日本学術振興会科学研究費補助金(基 盤研究 (B) 25289132,研究代表者:大阪大学大学院 鎌 田敏郎,研究分担者:立命館大学 内田慎哉,大阪大学大 学院 寺澤広基)の援助を受けて行った。ここに記して謝 意を表する。

参考文献

- 日本建築学会:建物の火害診断および補修・補強方 法指針・同解説,2015年2月
- 2) 皿井剛典,高橋輝,田中 徹,清水陽一郎:コア 孔を利用した孔内局部載荷試験装置の開発,土木学 会年次学術講演会講演概要集 61 巻,6 号, pp257-258,2006.9

- 3) 皿井剛典,田中 徹,澤口啓希: 孔内局部載荷試験 による構造物の深さ方向のコンクリート物性評価 に関する研究,コンクリート工学年次論文集, Vol.34, No.1, pp.1828-1833, 2012.7
- 4) 皿井剛典,田中 徹,澤口啓希:孔内局部載荷試験 によるコンクリート構造物の深さ方向の物性評価 に関する研究,シンポジウム コンクリート構造物 の非破壊検査論文集,Vol.4, pp.151-160, 2012.8
- 5) 皿井剛典,春畑仁一,阪口明弘:火害を受けたコン クリート構造物の劣化診断手法の検討(その3 コ ンクリート劣化深さの微破壊試験結果),日本建築 学会大会学術講演梗概集(北海道),pp.127-128, 2013.8
- 6) 皿井剛典,澤口啓希,春畑仁一,阪口明弘:火害を 受けたコンクリートの孔内局部載荷法による劣化 深さ測定及び他手法との比較検討,コンクリート工 学年次論文集,Vol.36,No.1, pp.1360-1365, 2014.7