論文 超弾性合金の配筋位置によってヒンジリロケーションした RC 梁の 構造性能評価に関する基礎実験

鈴木 裕介^{*1}・上野 拓^{*2}・Sanjay PAREEK^{*3}・荒木 慶一^{*4}

要旨:本研究では,主筋の一部(梁端などのヒンジ形成位置)に超弾性合金を代替した RC 梁が,一般的な RC 梁に比べ強度及び剛性などの構造性能で劣ることに着目し,SEA の配筋位置を変えるヒンジリロケーシ ョンによって,当梁の構造性能がどの程度改善されるか実験的に検討した。実験は,矩形断面梁の両端に加 カスタブを設けた試験体計4体の4点逆対称静的曲げ載荷として実施した。結果として,SEA 配筋位置を梁 中央側に移したヒンジリロケーションによって,耐力・剛性・エネルギー吸収量などが向上することを確認 した。しかし,SEA 継手治具端部の支圧による損傷により,剛性の向上は想定よりも小さなものであった。 キーワード:超弾性合金,自己復元,ヒンジリロケーション,構造性能,残留ひび割れ

1. はじめに

中大規模地震により被災した場合であっても,建物の 構造性能維持と早期回復を目的とした,自己復元構造

(Self-Centering Structure) への注目が国内外で高まって いる 1)。筆者らはこれまで、全体崩壊型の鉄筋コンクリ ート(以下, RC) 骨組構造を対象に, 東北地方太平洋沖 地震や熊本地震など設計基準の想定を超えた大規模地震 被災によって、建物の各部材が大変形を経験した後でも 変形回復し早期復旧及び継続使用が可能となる建築物の 実現を目指し、主筋の一部に、形状記憶合金の一種であ る超弾性合金(Super-Elastic Alloy 以下, SEA)を用いた 自己復元型構造の開発に従事してきた。特に, SEA の中 でも既存の Ni-Ti 系合金に比べて加工性に優れ, 良好な 超弾性特性を示し、さらに銅が主原料であるため、将来 的に低コスト化が期待される, 銅-アルミニウム-マン ガン(以下, Cu-Al-Mn)合金を用いて研究開発を実施し ている。詳細として, SEA を部材主筋の一部に代替(継 手を用いてヒンジ形成位置のみに配筋)した RC 縮小梁 部材(以下, SEA-RC)の静的曲げ載荷試験を通し,通常 のRC部材(以下, SD-RC)の塑性変形領域を経験した 後も、残留変形及びひび割れがわずかなものに抑えられ ることを確認した^{2),3)}。しかし, Cu-Al-Mn 合金の力学特 性(強度及びヤング係数)が一般的な鉄筋より低く, SEA-RC 部材の耐力及び剛性は, SD-RC 部材のそれに比べて 劣る。そのため、現状、中小地震程度の外力作用時にお いても架構全体の応答変形が大きくなる可能性があるこ とが課題となる。これは、補強筋に使用する SEA の材料 強度及び剛性の増進や,太径化によって,改善可能では あるが、材料単体の強度及び剛性の向上については、現 在開発途上であり期間を要するとともに、使用する SEA が銅系の材料であることから鉄筋と同等の性能に仕上げ ることは容易でない。太径化については、径が異なる鉄 筋との継手機構を要すため、施工性が課題となる。

本研究では、以上の課題改善を目的に、SEA の配筋位 置を梁端部(柱フェイス)から0.5Dまたは1.0D程度(D: 梁せい)移し、SEA 配筋位置でヒンジ形成(ヒンジリロ ケーション)させることを計画した(図-1参照)縮小 型 SEA-RC梁の静的加力実験を通して、SEA の配筋位置 が架構の各種構造性能に及ぼす影響について検討する。

2. 実験概要

2.1 試験体概要

図-2 に後述の SEA(1.0D)試験体を例に試験体形状及 び配筋詳細を,並びに,後述する SEA 鉄筋継手部の詳細 を示す。試験体は,断面 $b \times D = 100 \times 150$ mm を有する 梁部材とし,その両端に梁に対し十分に剛とした加力ス タブを設けた。梁部材の配筋詳細として,主筋は 2-D10, あばら筋は 2- φ 4@50 とした。実験変数は,SEA の使用の 有無及び配筋位置であり,通常のRC梁である試験体SD, 梁端部に SEA を配置した試験体 SEA(0D),SEA 配筋位

*1 大阪市立大学 大学院工学研究科 都市系専攻 助教 博士(工学) (正会員)
*2 日本大学 大学院工学研究科 建築学専攻 博士前期課程 (学生会員)
*3 日本大学 工学部 建築学科 准教授 博士(工学) (正会員)
*4 京都大学 大学院工学研究科 建築学専攻 准教授 博士(工学) (正会員)

置(SEAの中央断面)を梁端から0.5D及び1.0Dだけそ れぞれ移動させSEA 位置で塑性ヒンジが形成されるよ う(ヒンジリロケーション)計画した試験体SEA(0.5D), SEA(1.0D)の計4種類とした。SEAを使用した試験体の 鉄筋とSEAの接続には長さ40mmのM10ナットを継手 として用い,ネジ切り加工を施した鉄筋及びSEAをそれ ぞれ20mmずつ定着させた(図-2(b))。なお、事前に当 手法で接続した補強筋の一軸引張試験から、鉄筋及び SEAともに抜け出し破壊が生じないことを確認した。

2.2 使用材料

表-1 にコンクリートの,表-2 に補強筋の材料特性 を示し,図-3にSEAの応力ひずみ関係を示す。SEAの ひずみ度は非接触画像センサーを用いて計測した。コン クリートはF_c=30 MPaとした。梁及びスタブ主筋(D10) にはSD295を,あばら筋(q4)にはSR295を使用した。 また,SEAには,長さ100mm径12mmのCu-Al-Mn合 金の丸鋼を,M10にねじ切り加工し使用した。SEAの材 料特性の詳細として,一軸引張試験結果から得た0.2% オフセットによる降伏強度が200 MPa程度,ヤング係数 が30 GPa程度である。また,図-3に示すように,非線 形弾性に近いヒステリシスを有した材料である。

2.3 加力及び測定の概要

加力方法は、図-2 中に示すように梁部材中央を反曲 点とした逆対称4転曲げ載荷とし、部材角 R=0.125,0.25, 0.5,0.75,1.0,2.0 rad.までの変位制御による静的漸増片側 繰返し載荷として計画した。主な測定項目は、荷重、両 端の加力スタブに取付けた鉛直方向変位計の測定値と梁 スパン(700 mm)から算出した梁部材角、図-4 に示す 各区間の材軸方向変位から算出した曲率、及び、各補強 筋のひずみ度である。

表-1 コンクリートの材料特性

試験体	材齢 (d)	圧縮 強度 (MPa)	圧縮 ひずみ (MPa)	ヤング 係数 (GPa)	割裂 強度 (MPa)
SD	37	40.1	0.25	29	3.47
SEA(0D)		40.4	0.23	29	3.31
SEA(0.5)	20	34.0	0.23	26	2.96
SEA(1.0D)	38	40.6	0.24	29	3.03

表-2 補強筋の材料特性

鉄筋種別		降伏 強度 (MPa)	引張 強度 (MPa)	降伏 ひずみ (%)	ヤング 係数 (GPa)	
SD	D10 (SD295)	362.9	362.9 502.4		186	
SEA(0D)		179.3	—	0.73	25	
SEA(0.5D)	D10*	203.9	—	0.68	30	
SEA(1.0D)		201.6	—	0.68	30	
あばら筋	φ4 (SR295)	_	560.3	_	_	

*12mm 径の丸鋼をネジ切り加工

3. 実験結果

3.1 荷重変形関係及び強度結果一覧

図-5 に荷重変形関係を,表-3 に強度結果一覧を示 す。ひび割れ発生時せん断力の実験値は、目視によりひ び割れを確認したときの値とした。降伏時せん断力の実 験値は、SD 及び SEA(0D)試験体については、梁端におけ る補強筋が、SEA(0.5D)、SEA(1.0D)試験体については、 配筋した SEA が(材料試験の結果を参考に)降伏ひずみ に達したときの値とした。なお、ヒンジリロケーション を計画した SEA(0.5D)、SEA(1.0D)試験体ともに、梁端に おける鉄筋のひずみ度も同時に測定しており,梁端位置 での鉄筋に先行して SEA が降伏性状を示すこと,及び, 最終サイクルである部材角 R = 2.0%まで梁端位置にお ける鉄筋が降伏せず弾性範囲内に留まることを確認して いる。計算値における各強度は,SD及び SD(0D)試験体 においては梁端の断面,SEA(0.5D)及び SEA(1.0D)におい ては配筋された SEA の区間(図-2(b)内の中央の 60mm) の最も梁端側の断面における断面解析から算出した各モ ーメントをせん断力に換算した。計算値における部材角 については,第一折れ点の部材角は,ひび割れ発生時せ ん断力を弾性剛性で除した値,第2折れ点の部材角は, 弾性剛性を菅野式⁴)により低減した降伏時剛性(割線剛 性)を算出し,これで降伏時せん断力を除した値とした。 終局時の部材角は2%とした。また,表中の実験値及び計 算値の括弧内の値は,SD試験体との比較を示している。

各試験体の荷重変形関係の実験結果より, すべての試 験体とも部材角 R = 0.5~1.0%程度で降伏性状を示し, 最 終サイクルである R = 2.0%まで緩やかに強度が上昇し た。試験体間の各実験値の比較においては, ひび割れ発 生時せん断力は, SD 試験体が最も大きいものの, SEA (1.0D)試験体が SD の 90%程度であり大差は見られなか った。降伏時せん断力及び最大せん断力の比較では, SEA を使用した試験体3体についてはSEAの配筋位置を0.5D, 1.0D と移しヒンジリロケーションすることで, 各せん断

図-5 荷重-変形関係

表-3 各強度結果一覧

試験体 種別	ひび割れ発生時せん断力			降伏時せん断力			最大せん断力		
	実験値	計算値	実/計	実験値	計算値	実/計	実験値	計算值	実/計
	kN	kN	_	kN	kN	_	kN	kN	—
SD	6.3	5.5	1.14	20.0	18.1	1.10	21.8	18.9	1.16
SEA(0D)	4.6	4.5	1.02	7.7	9.5	0.81	10.1	9.7	1.04
	(0.74)	(0.82)		(0.38)	(0.52)		(0.46)	(0.51)	
SEA(0.5D)	4.3	4.7	0.92	8.1	10.5	0.77	11.0	10.7	1.02
	(0.68)	(0.85)		(0.41)	(0.58)		(0.50)	(0.73)	
SEA(1.0D)	5.7	6.3	0.90	10.8	13.9	0.78	14.3	14.2	1.01
	(0.90)	(1.15)		(0.54)	(0.77)		(0.66)	(0.75)	

※()内は, SD 試験体との比較を示す

力の向上がみられるものの, SEA(1.0D)試験体の場合で あっても, SD 試験体の 0.54 及び 0.66 倍程度であった。

次に,各試験体の残留変形を比較すると,SD 試験体は 主筋降伏以降で,各サイクルにおける最大変形角に対し て 40~65%程度の残留変形を示した。これに対し SEA を配筋した試験体3体は,降伏した(SD 試験体の塑性変 形領域に達した)後も SEA の超弾性効果によって変形回 復し,最終サイクルである R=2.0%を経験した後もその 効果は顕著であった。一方で,SEA の配筋位置を 0D, 0.5D,1.0D と梁中央側に移すにつれて,SEA による変形 回復効果が小さくなり,SEA(0D)試験体の最終サイクル の残留変形が 0.3%程度であったのに対し,SEA(1.0D)試 験体のそれは 0.5%程度に至った。これについては,次節 に記すひび割れ状況の観察結果を踏まえ考察する。

各試験体の実験値と計算値を比較すると、補強筋の違い及び SEA の配筋位置の違い関わらず、いずれの試験体においても、概ね良い対応が見られた。しかし、SEA を用いた3体の降伏せん断力のみにおいては、ひび割れ発生後の剛性を過大に評価しており、計算値が実験値を20%程度上回る結果に至った。

3.2 ひび割れ破壊状況と各区間の曲率の関係

図-6 に各試験体の最終破壊状況(部材角 R = 2.0%) と A-D 区間それぞれにおける部材角に対する曲率の進 展状況を示す。最終破壊状況の図中において,拡幅が最 も大きくなったひび割れを黒色で示し,それ以外の軽微 なものを灰色で示している。また,同図中に SEA の配筋 位置を併記する。曲率は,各区間の梁上下面の梁軸方向 に取り付けた変位計の計測結果から算出した値である。

SD 試験体及び SEA(0D)試験体は,部材角の進行とと もに梁端付近の曲げひび割れが集中して拡幅し,変形に おいても A 区間の曲率のみが進展する結果となった。ま た,小変形角時において,その他区間における曲げひび 割れも発生したが,部材角が進行するとともにそのひび 割れは閉じ梁端のみに変形と損傷が集中する結果となっ た。SEA(0.5D)試験体は,引張側 SEA(下端筋)のナット の端部(SEA 側)である,A 及び B 区間の境界位置の断 面から主要な曲げひび割れが発生した。曲率の進展にお いても,A 及び B 区間の値がほぼ同等に推移した。また,

R=0.5%のサイクルにおいて, 圧縮側 SEA(上端筋)に おける継手ナット梁端側で, ナットの支圧の影響による ものと考えられる斜めひび割れが発生し, A-B 区間の境 界から発生した曲げひび割れと連続した。SEA (1.0D) 試験体は, B 区間の SEA 配筋位置(ナット端部)の断面 で発生したひび割れの拡幅が進展し, B 区間の曲率が最 も大きくなる結果となった。また, A 区間の曲率も B 区 間のそれの6割程度で推移した。並びに, SEA(0.5D)試験 体に見られた, 圧縮側 SEA の継手ナットの支圧の影響に

よるものと考えられるひび割れ発生がより早期に見られ, B 区間で発生した曲げひび割れが、梁断面中央付近から 斜め方向に進展しナットの支圧によるひび割れと連続し た。以上, SEA 配筋位置によってヒンジリロケーション し、主要な曲げひび割れ及び曲げ変形が卓越する断面を 制御可能であることを示したが,継手ナットの支圧の影 響によって,試験体計画時に剛と仮定した領域(主に A 区間)での変形と損傷も進行する結果に至った。前節で 記した, SEA 配筋位置を梁中央に移すにつれ, 変形回復 効果の低下が見られた点については、このナットの支圧 によるひび割れが影響しているものと考えられる。R= 1.0%サイクル以降の加力において、このひび割れの拡幅 が、引張側断面の曲げひび割れとともに比較的大きくな り、これと交差する鉄筋(圧縮鉄筋やあばら筋)の一部 が降伏性状を示したことで除荷後もひずみ及び変形が残 留し、これが変形回復効果の低下につながったものと考 えられる。しかし本実験では、対象位置(支圧の影響に

よるひび割れと交差する鉄筋) でのひずみ度の計測は実施していないため、以上の精査については、今後、FEM 解析などによる検証が必要である。

3.3 経験部材角とひび割れ幅の関係

図-7 に各試験体の各加力サイクルピーク時及び除荷 後の最大ひび割れ幅を示す。図中のひび割れ幅は、各試 験体の各サイクルピーク時において、最も拡幅したひび 割れ(図-6 中において黒色で示したひび割れの引張側 最外縁の位置)の幅を、クラックスケールを用いて計測 した値である。SD 試験体は、R=0.25%から残留ひび割 れが見られ,降伏性状を示した R=1.0%サイクルで,一 般構造物の許容ひび割れ幅5)である 0.3 mm 程度に至り, その後さらに大きく拡幅した。これに対し, SEA を用い た試験体3体は、R = 0.5%まで残留ひび割れはほとんど 見られず, SD 試験体における塑性変形領域に到達した 後も,残留ひび割れ幅が 0.3 mm 未満にとどまり,既往の 研究 2).3)と同様の結果に至った。なお,図-5の荷重変形 関係における残留変形角の検討において, SEA 配筋位置 を梁中央に移すにつれ、変形回復効果の低下が見られた が、最大残留ひび割れ幅の拡幅の推移においてはヒンジ リロケーションの影響による明確な差違は確認されなか った。本節で記した引張側最外縁の最大ひび割れ幅の他 に、前述(3.2節内)した、上端筋の継手ナット梁端側か らの斜めひび割れも除荷後に残留したことで、部材角の 変形回復効果の低下につながったものと考えられる。

3.4 剛性低下率の推移と割線剛性の比較

図-8 に各試験体の剛性低下率を示す。図中の剛性低下率については、まず、図-5 に示す荷重変形関係を用いて、各載荷サイクルピーク点と原点を結んだ割線剛性を算出し、弾性剛性(ひび割れ発生点の割線剛性)に対するそれらの比として算出した。SD 試験体と SEA 試験体3 体を比較して、第1サイクル(R=0.125%)から 20%程度の低下率の違いが見られた。SEA(0.5D)及び SEA(1.0D)試験体はヒンジリロケーションによって、剛性低下率がわずかに軽減されたものの、さらなる改善が必要要である。

図-9に SEA を用いた試験体 3 体の SD 試験体との割 線剛性の比較を示す。前述のとおり SEA を用いた試験体 3 体の剛性低下率に大きな違いは見られなかったものの, 割線剛性の値には 10%以上の差が確認された。詳細とし て, SEA(0D)試験体は, *R* = 0.5 %以降 SD 試験体の 50% 程度で推移した。これに対し, SEA(1.0D)試験体で SD 試 験体の 70%程度で推移し, ヒンジリロケーションによる 剛性改善が見られた。しかしながら, 3.2 節で述べた, SEA の継手ナット端部における支圧ひび割れによって, 剛と仮定した領域での変形及び損傷が顕在化したため, 剛性の改善効果が想定よりも小さいものに至っている。

3.5 累積消費エネルギー量の比較

図-10 に SEA を用いた試験体の SD 試験体との累積 消費エネルギー量の比較を示す。図中の値は、図-6に 示す荷重変形関係のループ面積から消費エネルギー量を 算出し,SD 試験体の消費エネルギー量に対する SEA を 用いた試験体3体それぞれの比率を示している。SEAを 用いた試験体は,SD試験体が降伏性状を示した R = 0.5 ~1.0%において,SD試験体に比べて著しく小さくなる 傾向を示した。R = 1.0%以降はSD試験体と比較して横 ばいで推移するが, SEA(0D)試験体で SD 試験体の 30% 程度, ヒンジリロケーションした SEA(1.0D)試験体にお いても SD 試験体の 50~60%程度の消費エネルギー量で あった。以上,エネルギー吸収量は,一般的な RC 梁に 比べ劣っているため、最終破壊状況で記した、SEA 継手 ナット端部における支圧破壊を防止し剛性を上昇させる こと、及び、繊維補強コンクリートを利用してコンクリ ートの曲げタフネスを向上させることなどで、さらなる 改善を図る必要がある。

4. まとめ

本研究では,SEAの配筋位置によるヒンジリロケーションした縮小モデル梁部材試験体の静的曲げ載荷試験を 通して,一般的な RC 梁との各種構造性能の比較検討を 行った。以下に得られた知見を述べる。

- (1) SEA の配筋位置を変えることで,梁端主筋(鉄筋)に 先行して SEA が降伏性状を示すとともに,当断面で の曲げ変形及び損傷が進展することから,当初の計 画通りヒンジリロケーションが可能であることを明 らかにした。
- (2) SEA の配筋位置によってヒンジリロケーションした SEA(0.5D)及び SEA(1.0D) は、SEA(0D)に比して、強 度及び剛性など各主構造性能が改善されることを確 認した。また、既往の実験結果と同様に、ヒンジリロ ケーションした場合であっても、SEA の超弾性効果 によって、自己復元力(変形及びひび割れの回復効果) を発揮できることを示した。
- (3) SEA(0.5D)及び SEA(1.0D) は、圧縮側 SEA の継手ナ ット端部(スタブ側)において、ナットの支圧による ものと考えられるひび割れが発生し、剛域と仮定し た断面内での変形及び損傷が進展する結果に至った。 この影響によって、構造性能(主にひび割れ後の剛性) の改善が想定よりも小さいものとなった。
- (4) 継手ナットの支圧による損傷などを防止し、剛域と 仮定した断面の変形を抑えること、繊維補強コンク リートの利用など母材の曲げタフネスを向上させる

図-10 SD 試験体との素積エイルキー重の比較 ことによって、更なる構造性能の改善が見込まれると考

謝辞

えられる。

本研究は,科学研究補助金・基盤研究(A)(課題番号: 16H02376,代表者:荒木慶一)による助成のもとで実施 した。また,(株)古河テクノマテリアル特殊金属事業部の 喜瀬 純男氏には,本試験体の製作にあたり,超弾性合 金の材料提供と力学特性についてのご助言など,多大な ご協力を賜りました。ここに記し謝意を表します。

参考文献

- Nathan Brent Chancellor, Matthew R. Eartherton, David A.Roke, and Tugce Akbas: Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow, Buildings, Vol.4, pp.520-548, 2014
- 2) Kshitij C. Shrestha, Sanjay Pareek, Toshihiro Omori, and Yoshikazu Araki: Feasibility of Self-Repair Network System in Concrete Beams With Cu-Al-Mn Superelastic Alloy Bars, コンクリート工学年次論文集, Vol.34, No.1, 2012
- 3) Sanjay Pareek, Kshitij C. Shrestha, Yusuke Suzuki, Tomohiro Omori, Ryosuke Kainuma, and Yoshikazu Araki: Feasibility of Externally Activated Self-Repairing Concrete with Epoxy Injection Network and Cu-Al-Mn Superelastic Alloy Reinforcing Bars, Smart Materials and Structures, Vol. 23, 105027, (13pp.), 2014
- 4) 日本建築学会:鉄筋コンクリート構造計算規準・同 解説,2010
- 5) 日本建築学会:鉄筋コンクリート造建築物の耐久性 設計施工指針・同解説,2016