論文 RC ロックシェッドの衝撃応答解析に基づく破壊確率の検討

栗橋 祐介^{*1} · Rocco Custer^{*2} · 小室 雅人^{*3} · Kristian Schellenberg^{*4}

要旨:本研究では, RC ロックシェッドの衝撃応答解析結果に基づいて, その破壊確率を検討することを目的 に, 耐衝撃挙動に大きな影響を及ぼすことが想定される材料特性値(不確定要素)を選定するとともに, それ らの確率分布を設定し三次元弾塑性有限要素解析を実施した。ここでは, 頂版部の変位に関する弾性復元率 *ER* が RC ロックシェッドの損傷度の評価指標の1つになるものと考え, 解析結果に基づいて弾性復元率 *ER* と各不確定要素に関する回帰式を求め, モンテカルロ・シミュレーションにより *ER* の累積分布関数を得た。 これらの結果より, 衝撃応答解析に基づく破壊確率の推定手法を提案した。

キーワード: RC ロックシェッド, 衝撃応答解析, 弾性復元率, 破壊確率

1. はじめに

鉄筋コンクリート (RC) 構造物の合理的な耐衝撃設計手 法の確立を目的として, RC 梁, RC 版および RC ロック シェッド模型を用いた小型および実大規模の重錘衝撃落 下実験が実施されている^{1),2)}。また,これらの実験を対 象とした三次元弾塑性衝撃応答解析が行われており,衝 撃力や変位および破壊性状を適切に評価可能な数値解析 手法が提案されている^{3),4)}。

従って、ロックシェッドの破壊基準を適切に設定し、上 記の数値解析手法を用いて種々の材料特性値のばらつき (不確定要素)を考慮した衝撃応答解析を行うことによ り、その破壊確率Pfを推定できるものと考えられる。た だし、ロックシェッドの損傷度に関する確率密度関数を 求めるためには、膨大なケースの数値解析結果が必要で あるため、上記の手法は現実的ではない。

そのため、本研究では、ロックシェッドの衝撃応答解 析結果に基づいた破壊確率 Pf の推定法を提案することを 目的に、ロックシェッドの耐衝撃挙動に大きな影響を及 ぼすことが予想される不確定要素を選定するとともに、 その確率分布を設定し、10ケース程度のロックシェッド の三次元弾塑性衝撃応答解析を実施した。なお、数値解 析には非線形衝撃応答解析用汎用コード LS-DYNA⁵⁾を用 いた。ここでは、ロックシェッドの損傷度には、頂版部 の変位の弾性復元率 (Elastic recovery Ratio: ER) が対応す るものと仮定し、ER と各不確定要素に関する重回帰式を 求めた。最後に、この重回帰式に関して 100 万ケース程 度のモンテカルロ・シミュレーションを行い、ER の累積 分布関数を求めた。

(a) 外観

(b) 頂版裏面と柱部の状況 写真-1 検討対象のロックシェッド

2. 数值解析概要

2.1 解析モデル

写真-1には、検討対象であるロックシェッドを示し ている。本ロックシェッドは、スイスグリソン州の山岳 部において 1981 年から供用されているリアイナトーベル 覆道であり、1987 年には落石災害が発生して軽微な損傷 を受けている。そのため、現在は岩盤の経過観察を行う とともに各再現期間における落石規模を想定し、補強設 計の検討が進められている。

図-1には、設計図書に基づき、かつ既往の研究成果⁴⁾ を参考にして作成した解析モデルを示している。本解析 モデルは、コンクリートの要素長を 50 mm とすることを

*1 室蘭工業大学大学院工学研究科 くらし環境系領域 社会基盤ユニット 講師 博(工) (正会員)

*2 Matrisk GmbH Dr. sc.

*4 Tiefbauamt Graubuenden Dr. sc.

^{*3} 室蘭工業大学大学院工学研究科 くらし環境系領域 社会基盤ユニット 准教授 博(工) (正会員)

基本に分割しており,約53万節点および約50万要素で 構成されている。要素のモデル化に関しては,鉄筋には 2節点の梁要素を用い,その他の要素には8節点の固体 要素を用いている。四隅の柱下端部は完全固定支持,頂 版上面と緩衝材の界面は面と面との接触・剥離を伴う滑 りを考慮した接触面を定義している。

2.2 材料構成則と確率分布

図-2には、本数値解析で用いたコンクリート、鉄筋お よび緩衝材の応力-ひずみ関係を示している。これらの 材料構成則は、既往の研究成果⁴⁾を参考にして設定した。

コンクリートの材料構成則は, 図-2(a) に示すよう に, 圧縮側に関しては, 相当ひずみが1,500 µ に達した時 点でコンクリートが降伏するものと仮定し, 完全弾塑性 体のバイリニア型にモデル化した。また, 引張側に関し ては, 引張強度(圧縮強度の1/10)に達した段階で, 応力 を完全に解放するものと仮定している。降伏の判定には Drucker-Pragerの降伏条件式を採用し, 内部摩擦角を30 度と仮定した。

鉄筋の材料構成則は, **図-2**(b)に示すように, 塑性硬 化係数*H*[']を弾性係数の1%とするバイリニア型の等方硬

化則を適用した。なお,降伏の判定には von Mises の降伏 条件式を採用している。各物性値は,弾性係数 $E_s = 200$ GPa, ポアソン比 $v_s = 0.3$ と仮定した。

緩衝材の構成則は、図-2(c)に示すように、圧縮側に ついてバイリニア型にモデル化した。有限要素法の場合 には土質材料の側方流動を再現することが困難であるた め、側方流動の開始点を擬似的に降伏点とすることでモ デル化している。このモデル化の妥当性については、文 献 6) で確認しているが、今後さらに検討する余地がある ものと考えている。

なお,減衰定数は質量比例分のみを考慮するものとし, 予備解析を実施して鉛直方向最低次固有振動数に対して 1%と設定した。また,ひずみ速度効果は考慮していない。 重錘は,コンクリート製であるものとしてモデル化した。

表-1には、各材料特性値の確率分布の一覧を示して いる。ロックシェッドの耐衝撃性に大きな影響を及ぼす 不確定要素としては、コンクリート圧縮強度 f'_c ,鉄筋の 降伏強度 f_y ,緩衝材の弾性係数 E_G と降伏強度 f_G を選定 した。また、確率密度関数の種類は、既往の文献⁶⁾を参 考にして実状を再現したものとなるように設定した。

2.3 解析ケースと損傷度の指標

表-2には,解析ケースの一覧を示している。本研究 では,まずシリーズ1として,解析結果の妥当性の検討 と解析対象ロックシェッドの耐衝撃特性の評価を目的に, 前述の4つの材料特性値(不確定要素)を固定し,落石衝 突速度を変化させた4ケースについて検討を行った。次 に,シリーズ2として,各不確定要素をそれぞれ変化さ せた10ケースについて検討した。表中のケース名の第1

不確定要素	分布形	モーメント	確率分布パラメータ*
コンクリート圧縮強度 f'_c	対数正規分布	平均值 μ: 62 MPa, 標準偏差 σ: 6.24 MPa	$\lambda = 0.10, \zeta = 3.65$
鉄筋降伏強度 fy	対数正規分布	平均值 μ: 509 MPa, 標準偏差 σ: 36 MPa	$\lambda = 0.06, \zeta = 6.23$
緩衝材の弾性係数 E _G	ベータ分布	平均值 μ: 45 MPa, 標準偏差 σ: 12.6 MPa	α = 4.44, β = 3.61 最小值:3.0 MPa, 最大值:79.3 MPa
緩衝材の降伏強度 σ_G	ベータ分布	平均值 μ: 5.5 MPa, 標準偏差 σ: 0.77 MPa	α = 12.33, β = 12.96 最小值:1.6 MPa,最大值:9.6 MPa

表-1 不確定要素の確率分布

*: $\lambda = \ln \mu - \frac{\zeta^2}{2}, \, \zeta^2 = \ln \left\{ 1 + \left(\frac{\sigma}{\mu}\right)^2 \right\}$

No.	解析	落石質量	衝突速度	入力エネルギー	緩衝材厚さ	コンクリート	鉄筋降伏強度	緩衝材の弾性係数	緩衝材の降伏強度
	シリーズ	(ton)	(m/s)	(kJ)	(mm)	強度 f'_c (MPa)	f_y (MPa)	E_G (MPa)	σ_G (MPa)
1-1			10	470		41.2	290	100	6.0
1-2	1	4.8	15	706	300	41.2	290	100	6.0
1-3	1	4.0	20	941	500	41.2	290	100	6.0
1-4			25	1,177		41.2	290	100	6.0
2-1	1	4.8	25	1,777	400	33.0	480	55	6.5
2-2						31.0	465	70	6.5
2-3						35.0	435	55	6.0
2-4						41.2	290	50	6.0
2-5	2					30.0	290	100	6.0
2-6	2					41.2	330	100	6.0
2-7						35.0	290	75	6.5
2-8	2-8 2-9					41.2	390	100	6.0
2-9						41.2	450	100	6.0
2-10						30.0	360	60	6.5

項は解析シリーズを示し,第2項には各解析シリーズに おける通し番号を示している。

RC ロックシェッドの損傷度は,弾性復元率 *ER* を用い て評価した。ここで, *ER* は応答変位波形に関する解析結 果から得られる最大変位および残留変位を用いて下式(1) で求めている(**図**-3(a)を参照)。

$$ER = \frac{\delta_{max} - \delta_{res}}{\delta_{max}} \tag{1}$$

ここで、 δ_{max} : 頂版部中央部の最大変位、 δ_{res} : 頂版部中 央部の残留変位、である。なお、 図-3(b) に示すように RC 部材の曲げ載荷において,荷重-変位関係を考えると 主鉄筋降伏までの載荷勾配と除荷勾配はほぼ同様である ことから,最大変位 δ_{max} から残留変位 δ_{res} を差し引いた 復元変位 ($\delta_{max} - \delta_{res}$)は,降伏変位 δ_y と概ね等価である。 従って,式(1)は,下式(2)のように変換可能である。

$$ER = \frac{\delta_y}{\delta_{max}} = \frac{1}{\mu} \tag{2}$$

ここで, *μ* は塑性率⁷⁾ である。従って, 弾性復元率*ER* は, 塑性率*μ*の逆数であることが分かる。

3. 数值解析結果

3.1 耐衝撃挙動に及ぼす入力エネルギーの影響 (シリーズ 1)

(1) 時刻歴応答波形

図-4には、シリーズ1に関する落石衝撃力、落石貫入 量および頂版中央部の変位に関する時刻歴応答波形を示 している。なお、落石貫入量は緩衝材に対する貫入量で あり、頂版の変位量は含まれていない。また、表-3に は各応答値の一覧を示している。

図-4より、いずれの応答値も、衝突速度の増加に伴っ て増大していることが分かる。落石衝撃力は、継続時間 が 25 ms 程度の正弦半波が卓越する性状を示している。

図-4 各衝突速度における時刻応答波形 (シリーズ1)

No.	落石衝擊力(kN)	落石貫入量 (mm)	頂版の最大変位 (mm)	頂版の残留変位 (mm)	弾性復元率 ER (%)	塑性率μ
1-1	3,056	32.5	11.3	3.9	65.0	1.54
1-2	5,567	54.6	39.7	25.4	36.0	2.78
1-3	7,868	97.1	87.9	66.0	24.9	4.02
1-4	9,078	135.8	135.2	110.1	18.6	5.38

表-3 解析結果による応答値の一覧(シリーズ1)

図-5 頂版下面のひび割れ性状 (シリーズ 1)

落石貫入量は,落石衝突後10msにおいて急激に増加し, その後増加勾配が低下し,40ms程度で最大値に到達して いる。その後,貫入量は低下しており,落石がリバウン ドしている様子が窺われる。このような波形性状は,既 往の実規模RCロックシェッドの重錘落下衝撃実験²⁾に おいても同様に見受けられる。

また, 頂版中央部の変位は, 衝突速度 V = 10 m/s におい ては,継続時間が 60 ms 程度の主波動が励起した後, 減衰 自由振動を呈している。また, 残留変位は, 3.9 mm 程度 である。このことから, ロックシェッドは未だ大きな復 元力を有しており, 載荷点近傍の主鉄筋は降伏している ものの, 損傷は比較的軽微であるものと考えられる。一 方, 衝突速度 V = 15, 20 および 25 m/s の場合には, V の 増加に伴って変位の復元率が減少するとともに, 振動が 急激に減衰する傾向が強く現れていることが分かる。特 に, V = 25 m/s の場合には変位の復元率が小さく, 損傷度 が大きいことが分かる。

(2) ひび割れ性状

図-5には、シリーズ1に関する頂版下面のひび割れ分 布性状を示している。なお、赤色で示された要素は、引 張応力がコンクリートの引張強度を超過し、解放され零となった要素であり、ひび割れ発生状態であるものと評価できる。図より、V=10 m/s の場合には、一方向曲げが卓越したひび割れ性状を示していることが分かる。また、ひび割れによる損傷も軽微であることより、前述の変位波形と対応した性状を示していると言える。衝突速度V=15,20 および 25 m/s の場合には、V の増加に伴って曲げひび割れの他、放射状のひび割れが多数発生する傾向にあることが分かる。

(3) 頂版部の変位と入力エネルギーとの関係

図-6には、頂版部変位と入力エネルギーとの関係を示 している。図より、最大変位および残留変位ともに、入力 エネルギーの増大に伴ってほぼ線形に増加していること が分かる。このような傾向は、実規模 RC ロックシェッ ドの重錘落下衝撃実験²⁾においても同様に見られる傾向 である。

これらのことから,本解析モデルは実ロックシェッド の耐衝撃挙動に及ぼす入力エネルギーの影響を適切に評 価しているものと考えられる。

3.2 耐衝撃挙動に及ぼす不確定要素の影響 (シリーズ 2)

No.	落石衝擊力(kN)	落石貫入量 (mm)	頂版部の最大変位 (mm)	頂版部の残留変位 (mm)	弾性復元率 ER (%)	塑性率 μ
2-1	8,626	137.8	128.3	73.3	42.9	2.33
2-2	9,086	130.1	130.8	76.8	41.3	2.42
2-3	8,508	144.0	127.7	79.8	37.5	2.66
2-4	8,397	150.0	134.8	109.2	19.0	5.26
2-5	9,098	123.1	162.5	130.5	19.7	5.08
2-6	9,075	123.9	125.2	98.7	21.2	4.72
2-7	9,113	113.4	155.0	123.5	20.3	4.93
2-8	9,136	122.4	112.0	76.8	31.4	3.18
2-9	9,136	121.4	108.4	67.5	37.7	2.65
2-10	8,943	137.0	161.1	112.4	30.2	3.31
最大值	8,397	150.0	162.5	130.5	42.9	2.33
最小值	9,136	113.4	108.4	67.5	19.0	5.26

表-4 解析結果による応答値の一覧(シリーズ2)

―― 解析ケース 2-1 (弾性復元率 ER = 42.9 %) ------ 解析ケース 2-4 (弾性復元率 ER = 19.0 %)

図-7 時刻歴応答波形の一例 (シリーズ 2)

図-6 頂版変位と入力エネルギーの関係 (シリーズ 1)

表-4には、シリーズ2の解析結果における各種応答値 の一覧を示している。また、図-7には、弾性復元率 ER が最大値および最小値を示した解析ケース2-1 および2-4 に関する落石衝撃力、落石貫入量および頂版中央部の変 位に関する時刻歴応答波形を示している。

表-4 より,各ケースにおける落石衝撃力の変動は小 さいことが分かる。これは,緩衝材の材料特性値が砕石 や礫混じりの砂質粘土を想定し,比較的大きな値が設定 されているためと推察される。落石貫入量の変動は,落 石衝撃力の場合よりも大きいものの,最大値と最小値の 差は30%程度である。

頂版部の最大および残留変位の変動は、落石衝撃力や落 石貫入量よりも大きい。これは、鉄筋降伏強度 f_y が RC ロックシェッドの変形に大きな影響を与えているためと 考えられる。また、残留変位の変動が最大変位の場合よ りも大きいが、これは、残留変位は最大変位と復元量の 影響を受けるためである。すなわち、鉄筋降伏強度 f_y は 降伏ひずみ ε_y と比例関係にあり、降伏ひずみ ε_y が変位の 復元量に大きく影響するため、残留変位の変動が大きく なるものと推察される。

なお,弾性復元率 *ER* は 19.0% ~ 42.9% に分布し,対応 して塑性率 μ は 5.26 ~ 2.33 となっていることから,損傷 度が比較的大きいケースも含まれていることが分かる。

4. 破壊確率の推定

前章で得られた全10ケースの衝撃応答解析結果を用い て RC ロックシェッドの破壊確率 P_f を求めるために,弾 性復元率 ER と各不確定要素に関する重回帰分析を行っ た。回帰式と各不確定要素の共分散行列は下記の通りで ある。なお,εは標準偏差 1.02の標準正規分布誤差項で ある。

$$ER = \beta_0 + \beta_1 \cdot f_c' + \beta_2 \cdot f_v + \beta_3 \cdot E_G + \beta_4 \cdot \sigma_G + \varepsilon$$
(3)

図-8 弾性復元率に関する累積分布関数

$$\beta_{i} = \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \beta_{4} \end{bmatrix} = \begin{bmatrix} -20.15 \\ -0.07 \\ 0.116 \\ -0.003 \\ 1.53 \end{bmatrix}$$
(4)

 $COV_{\beta_i} =$

192.07	-0.86	0.0003	-0.086	-25.0	
-0.86	0.0078	-1.41e-06	-0.00015	0.094	
0.0003	-1.41e-06	1.96e-05	1.05e-05	-0.001	(5)
-0.086	-0.00015	1.05e-05	0.0003	0.01	
-25.0	0.094	-0.001	0.01	3.43	

なお,本重回帰式(3)の決定係数は0.99であり,極めて 相関性の高い回帰式が得られた。

次に、**表**-1に示した不確定要素の確率分布と上記の 重回帰式を用いてモンテカルロ・シミュレーションを実施した。すなわち、各不確定要素を確率分布に基いて変 化させて *ER* を求める計算を 100万ケース程度行った。 その結果を弾性復元率 *ER* の累積分布として **図**-8 に示 す。RC ロックシェッドの破壊確率 P_f は、終局弾性復元 率 *ER_{failure}* を適宜設定し、破壊基準を *ER* < *ER_{failure}* と することで評価可能である。すなわち、落石質量および衝 突速度がそれぞれ 4.8 ton および 25 m/s の場合において、 *ER_{failure}* = 30% ($\mu_{failure}$ = 3.33) 程度とすると破壊確率 P_f はほぼ零であるが、*ER_{failure}* = 40% ($\mu_{failure}$ = 2.50) 程度と すると破壊確率 P_f は 12% 程度となる。

5. まとめ

本研究では、RC ロックシェッドの衝撃応答解析結果 に基づきその破壊確率 P_f を検討することを目的に、耐衝 撃挙動に大きな影響を及ぼすことが想定される材料特性 値(不確定要素)を選定するとともに、その確率分布設 定し,三次元弾塑性有限要素解析を実施した。また,解 析結果に基づいて弾性復元率 *ER* と各不確定要素に関す る回帰式を求め,モンテカルロ・シミュレーションによ り *ER* の累積分布関数の算定を試みた。本研究により得 られた知見は以下の通りである。

- 入力エネルギーの増加に伴うひび割れ損傷度合いや 頂版中央部変位の増加傾向は、既往の実験結果と同様 であることから、本解析モデルの妥当性を確認した。
- 2) 各不確定要素を変化させた衝撃応答解析結果より、 弾性復元率 ER と不確定要素に関する相関性の高い 回帰式が得られた。
- 3) 2)の回帰式を用いたモンテカルロ・シミュレーショ ンにより,弾性復元率 *ER*の累積分布関数を求めた。 RC ロックシェッドの破壊確率 P_f は,終局弾性復元 率 *ER*_{failure}を適宜設定し,破壊基準を *ER* < *ER*_{failure} とすることで,累積分布関数から評価可能である。

謝辞

室蘭工業大学大学院構造力学研究室の瓦井智貴君には, 数値解析からデータ整理に至るまで多大なるご支援を頂 いた。ここに記して感謝の意を表します。

参考文献

- 中田吉彦,桝谷浩,梶川康男,熊谷貴秀:重錘衝突 による鉄筋コンクリートはりの衝撃挙動に関する実 験的研究,構造工学論文集,土木学会, Vol. 46A, pp. 1831-1842, 2000.03
- 2) 佐伯侑亮,今野久志,栗橋祐介,岸 徳光:実規模 RCロックシェッドの耐衝撃挙動に及ぼす緩衝材の影響、コンクリート工学年次論文集, Vol. 37, No. 2, pp. 613-618, 2015.7
- 岸 徳光,三上 浩,松岡健一,安藤智啓:静載荷時 に曲げ破壊が卓越する RC 梁の弾塑性衝撃応答解析, 土木学会論文集,No. 619/I-47, 1999.4, pp. 215-233
- 4) 平田健朗,小室雅人,山口悟,岸徳光:砕石緩衝材を 設置した実規模落石覆道の耐衝撃挙動に関する数値 シミュレーション,コンクリート工学年次論文集, Vol.37, No.2, pp.601-606, 2015.7
- Hallquist, J. O., LS-DYNA Version R8 User's Manual, Livermore Software Technology Corporation, 2015.
- Schubert, M, Faber, M.H., 2009, "Beurteilung von Risiken und Kriterien zur Festlegung akzeptierter Risiken in Folge aussergewoehnlicher Einwirkung bei Kunstbauten", AS-TRA Bericht 616.
- 日本道路協会:道路橋示方書・同解説 (V 耐震設計編), 2012.4