論文 若材齢期間のクリープおよび付着すべり特性を考慮した鉄筋コンク リート部材の挙動予測

渡邊 湊*1・堀川 真之*2・田嶋 和樹*3・長沼 一洋*4

要旨:三次元 FEM 解析において,若材齢期間の鉄筋コンクリートのモデル化を行い,実大鉄筋コンクリート 柱部材の応力およびひび割れの予測を行った。その結果,付着すべり関係およびクリープひずみの考慮によ り,RC 部材端部の応力が低減されることを解析的に確認した。また,若材齢期間の付着すべりおよびクリー プひずみの複合的な応力低減効果が,コンクリート部材のひび割れ発生位置に影響を及ぼす可能性があるこ とを示した。

キーワード: 超高強度コンクリート 三次元 FEM 解析 若材齢クリープ 付着すべり ひび割れ

1. はじめに

1980年頃から,都心を中心に超高層 RC 造共同住宅が 建設されるようになった。2011年までには東京都内だけ で約400棟建設されており,今後も増加していくことが 予測される。超高層建物の下層階柱は軸力が大きく,か つ部材寸法の縮小が要求されることから,超高強度コン クリートが用いられることが多い。しかし,超高強度コ ンクリートは水セメント比が低く,自己収縮ひずみが顕 著であるため,初期ひび割れを引き起こす可能性が近年 の研究で報告されている。また,都心の共同住宅の多く は臨海部に建設されているため,ひび割れが鉄筋腐食を 促進し,耐久性能に及ぼす影響が内陸部と比較して大き いと考えられる。そのため,初期のひび割れ幅および位 置を予測し,耐久性能への影響を定量的に評価する手法 の構築が必要だと考えられる。

これまで,建築分野において,若材齢期間中のコンク リートに関する解析例は少なかったが、先に述べた背景 から, FEM を用いた検討例が増えつつある。最近では杉 江ら¹⁾および玉野ら²⁾をはじめとして,若材齢期間のコ ンクリートの応力予測が試みられている。しかし、構造 物全体の若材齢挙動を予測するためには検証が十分とい えず,解析手法の構築に向けて検討を重ねていく必要が あると考えられる。そこで、本研究では RC 造建物全体 のひび割れ発生位置およびひび割れ幅の予測を目指し, 三次元 FEM による若材齢期間の解析手法の構築を行う。 既報³⁾では、実大 RC 造フレームを対象としたひび割れ 位置の検証を行った。本報では、課題の一つであった若 材齢期間における付着すべり関係のモデル化およびクリ ープひずみの計算手法を FEM 解析に組み込んだ。また、 鉄筋拘束試験および実大柱部材を対象とした解析を実施 した。

*1日本大学大学院 理工学研究科建築学専攻 (学生会員)
*2日本大学 工学部建築学科助教 博士 (工学) (正会員)
*3日本大学 理工学部建築学科准教授 博士 (工学) (正会員)
*4日本大学 理工学部建築学科教授 博士 (工学) (正会員)

2. 解析手法

三次元 FEM により、コンクリートは直交異方性モデル で表現する⁴⁾。引張軟化領域では、破壊エネルギーの材 齢依存性は考慮せず、Cut-off モデルおよび土木学会式⁵⁾ の一定値を用いる。ひび割れモデルは、非直交固定ひび 割れモデルを用いた。1 要素中におけるひび割れの最小 交差角は 20° とした。また、若材齢期間のコンクリート は、クリープひずみが硬化時と比較して顕著であり、材 齢に伴って著しく変化することが知られているため、ク リープ関数の材齢依存性を考慮した。クリープ関数は、 Bazant & Osman⁶⁾が提案する 2 重べき乗則を用いた。以下 に式を示す。

$$J(t,\tau) = E^{-1}(\tau) [1 + \alpha \tau^{d} (t-\tau)^{\rho}]$$
(1)

ここで, **7**:載荷材齢[日], **t**:材齢[日], **E**:載荷時の 弾性係数[**GPa**]である。

なお、材料定数であるパラメータ *a*,*d*,*p* は高強度コン クリートに対応した実用的な値が提案されていないため、 今回は荻原らⁿが実施した引張クリープ試験結果と対応 する値を用いた。クリープひずみは重ね合わせの法則が 成り立つと仮定し、過去の応力履歴より計算されたクリ ープひずみをステップ毎に足し合わせている。なお、過 去のステップのクリープひずみは、増分とその主軸方向 のみを記憶する。さらに、現在のステップの主軸方向に 合うように垂直、せん断成分に変換し、クリープひずみ として累加している。図-1 にクリープひずみの取り扱 いの概念図を示す。また、近年の研究では若材齢におい ても鉄筋とコンクリート間にすべりが生じている可能性 が報告されており⁸⁾、コンクリート応力およびひび割れ 発生位置に影響を及ぼすことが予測されるため、鉄筋と コンクリート間に接合要素を設け、付着すべりの影響を

考慮した。なお,材齢に伴う付着剛性の変化を考慮する ため,強度発現を考慮した構成則を仮定した。また,付 着強度時のすべり量は,現状では有用なデータが見当た らないため,一定値と仮定した。

3. 鉄筋拘束試験を対象とした解析

3.1 解析概要

若材齢期間の付着すべり関係およびクリープひずみが コンクリートの応力に与える影響を確認することを目的 に, 三次元 FEM 解析を実施した。解析対象試験体は, 2012年に寺本ら⁸⁾が実施した鉄筋拘束試験とした。付着 およびクリープの影響を確認するために、①付着すべ り・クリープ無し、②付着すべり考慮、③クリープ考慮 および④付着すべり・クリープ考慮の計4つの解析を実 施した。なお、付着すべりおよびクリープの影響を明確 に確認するため、この解析ではひび割れの影響を無視し、 コンクリートは弾性体としている。コンクリートには六 面体要素,鉄筋にはトラス要素を用いる。試験体および 解析モデルを図-2 に示す。試験寸法は、断面が 150× 150mm,長さ 600mm の直方体であり,試験体中央に D22 の鉄筋が配筋されている。鉄筋に 60mm ピッチでひずみ ゲージが貼付されており, 材齢ごとの鉄筋ひずみ分布が 示されている。圧縮強度は材齢28日時点の材料試験では 120MPa程度で,水結合材比は16%である。

解析モデルは、対称性を考慮し、試験体の1/4部分の みをモデル化した。境界条件は、切断面直交方向の節点 変位を固定した。鉄筋端部は50mmの非定着区間が設け られているため、鉄筋をモデル化しないことで考慮した。 自由ひずみおよびヤング係数は、論文中に示されている 材料試験結果を用いた。なお試験体断面が小さいことか ら温度ひずみの影響は無視した。また、封かん養生のた め乾燥収縮の影響も考慮していない。自由ひずみ履歴お よびヤング係数の発現を図-3に示す。

付着すべり関係は、実験結果の鉄筋ひずみ分布から局 所の付着応力およびすべり量を材齢毎に算出した。算出 方法は三村ら⁹⁰の手法にならい、鉄筋ひずみとコンクリ ートの平均ひずみの差を積分することで算出した。コン クリートの平均ひずみは、各材齢における部材中央部の 鉄筋ひずみと等しいと仮定した。図-2 に付着すべり関 係の経時変化を示す。材齢ごとに付着強度を変化させ、 付着剛性の発現を表現している。付着強度時のすべり量 は 0.01mm で一定と仮定し、付着強度後は応力一定とし た。付着すべり関係は鉄筋とコンクリート間に接合要素 を設け、付着すべり関係を付与することで考慮した。図 -4 にクリープ関数 J およびクリープ関数のパラメータ を示す。

3.2 解析結果

図-5 の鉄筋ひずみ分布から,付着およびクリープを 考慮していないモデルは実験値を過大評価することを確 認した。一方で,クリープおよび付着すべり関係を考慮 したモデルが実験値を良好に模擬することが確認できた。 付着のみを考慮したモデルにおいては,鉄筋端部のひず みが低減される挙動を表現できることが確認できた。

図-6 に④の解析ケースにおける接合要素の端部およ び中央部の付着応力すべり関係の図を示す。端部の応答 が中央部と比べて顕著なことから,鉄筋端部のすべりが 表現できていることが確認できた。なお、本解析におい てはすべり破壊は確認できなかった。

図-7 に材軸方向のコンクリートの応力分布図を示す。 全モデルで共通して、モデル端部は圧縮側、中央部で引 張の応力が生じていることが確認された。付着およびク リープを無視したモデルに関しては、鉄筋端部近傍のコ

ンクリートに引張応力が集中している。一方,付着を考 慮したモデルにおいては,鉄筋端部位置に集中していた コンクリートの引張応力が,付着すべりにより中心に向 かってずれる挙動が確認できた。クリープを考慮したモ デルでは鉄筋近傍の要素における引張応力が低減されて いる。付着およびクリープを考慮したモデルでは両者の 特性が顕著に現れ,試験体端部および鉄筋近傍のコンク リートの応力が低減されていることが確認できた。

4. 実大柱試験体を対象とした解析

4.1 実験概要

付着すべりおよびクリープが実大柱試験体のコンクリ ート応力およびひび割れ発生位置へ及ぼす影響を確認す ることを目的に、片寄ら¹⁰⁾が実施した実大柱試験体を対 象に三次元応力解析を行った。図-8および図-9に試験 体概要,解析モデルおよび実験の切断面のひび割れ状況 を示す。本解析はL80 試験体および SFC150 試験体を対 象に行った。L80 試験体は圧縮強度 80MPa, SFC150 試 験体は 150MPa で、シリカフュームが添加されている。 また、どちらの試験体も断面中央および高さ方向中央で 切断し、ひび割れの観察を行っている。ひび割れ図にお ける赤線で示したひび割れはひび割れ幅 0.4mm 以上で, それ以外は0.4mm以下のひび割れとなっている。ひび割 れ図から,高さ方向ならびに幅方向中央付近にひび割れ が顕著に生じていることが確認される。材軸方向のひび 割れは 0.4mm 以上のひび割れが観測されており, 主筋お よび帯筋による拘束力が顕著であったと予測される。な お、L80 試験体にはひび割れは確認されていない。

L80 および SFC150 試験体の解析モデル図を図-10 お よび図-11 に示す。対称性を利用して試験体断面の 1/4 モデルを作成した。境界条件は、モデル底面を Z 軸方向 変位固定、モデル切断面は断面直交方向変位を固定した。 コンクリートは六面体要素、鉄筋はトラス要素でモデル 化した。付着すべりは、前章の解析と同様に、鉄筋とコ ンクリート間に接合要素を設け、付着すべり関係を付与 することで考慮した。自由ひずみは、温度ひずみと自己 収縮ひずみを足し合わせた値とした。自己収縮ひずみは 実験値を用いた。温度ひずみは論文中に示されていなか ったため、熱伝導解析を実施し、温度増分と線膨張係数 をかけ合わせた値とした。なお、熱伝導解析に用いたパ ラメータは、日本建築学会のマスコンクリート指針¹¹⁾ を参考に決定した。

ピーク時の断面内温度分布を図-12 に,温度分布図お よび温度履歴を図-13 に示す。断面内温度分布は,L80

および SFC150 試験体共に良好に模擬している。温度は 材齢1日程度で最大となり,L80 試験体は48℃,SFC150 試験体は57℃に達している。温度ひずみ,自己収縮ひず みおよび自由ひずみの履歴を図-14に示す。線膨張係数 は1.0×10⁶/℃で一定とした。ヤング係数および引張強度 の発現は,材料試験の結果を用いた。図-15 に強度発現 のグラフを示す。なお,引張強度は引張割裂試験で測定 された値の0.7倍¹²⁾と仮定した。クリープ関数の材料定 数は,荻原ら⁷⁾の実験値の引張側クリープひずみと対応 する値を用いた。付着すべり関係は寺岡ら¹³⁾が実施した 鉄筋拘束試験体の鉄筋ひずみ分布から,前章と同様の手 法で計算した。付着強度時のすべりは0.1mmとした。

4.3 ひび割れ無考慮モデル

図-16にL80試験体の高さ方向中央部におけるコンク リートの鉛直方向応力履歴を示す。グラフには解析結果, ひび割れ強度に加えて,参考値として片寄ら¹⁰⁾の論文中 に示された試験体中心位置の応力計算結果を引用してい る。解析結果は図-10に示すモデル中心位置の要素の応 力を出力している。L80試験体の応力履歴は、付着およ びクリープを考慮することで応力が大きく低減され、片 寄らの計算値と近い値となることが確認された。付着お よびクリープ考慮の引張応力は、最大でもひびわれ強度 の50%程度であることから、ひび割れ発生の可能性が極 めて低いと考えられ、実験のひび割れ状況と整合する。

図-17 に SFC150 試験体の鉛直方向応力履歴を示す。 付着・クリープ無しの解析結果は,材齢4日程度でひび 割れ強度に達することが確認された。付着およびクリー プ考慮の結果は,材齢3日程度でひび割れ強度に近くな るものの,材齢1~28日の間はひび割れ強度を超える応 力は見られなかった。一方で,材齢1日未満の材齢でひ び割れ強度に近い応力が発生しているため,ごく初期の 材齢でひび割れが発生する可能性があると考えられる。

図-18 にコンクリートの鉛直方向応力分布を示す。全 てのモデルにおいて,柱上面節点の変形がフリーのため, モデル中心部に向かって変形する挙動がみられた。その ため,部材外側上部に引張応力が集中することが確認さ れた。また,前章の解析結果と同様に,付着の考慮によ り部材端部の応力の低減が確認された。付着およびクリ ープを考慮したモデルに関しては,部材外側・内側共に 上下端部の応力が低減され,高さ方向の中央部の応力集 中が顕著となることを確認した。また,付着・クリープ の考慮により,最大で11Mpa程度の引張応力が低減され ることを確認した。

4.4 ひび割れ考慮モデル

SFC150 試験体は前節の弾性体の解析結果において, コンクリート応力がひび割れ強度を上回ったため, SFC150 試験体のみひび割れを考慮した解析を行った。 軟化後の構成則には,破壊エネルギーの影響を確認する ことを目的に,引張側構成則の軟化域は Cut-off モデルと, 土木学会標準示方書⁵⁾の軟化曲線を用いた JSCE モデル の両者を比較した。引張側構成則を図-19 に示す。

解析結果のひび割れ図を図-20に示す。なお、ひび割 れ図はすべて、モデル内側を示している。付着およびク リープ無考慮の試験体は、材軸直交方向のひび割れが各 所に分布していることが確認された。付着およびクリー プを考慮した試験体は、試験体高さ方向中央位置および 部材上部に断面を貫通するひび割れが散見された。また、 断面直交方向の中心に縦ひび割れが発生している。付着 すべりおよびクリープひずみの考慮により柱中央部のひ び割れが発生する傾向を概ね模擬することができた。引 張軟化曲線を JSCE モデルとした試験体は、部材中央部 のみにひび割れが集中しており、実験結果のひび割れ性 状と近い挙動を示すことを確認した。

図-21 に高さ方向のひび割れ幅の分布を示す。ひび割

れ幅は、断面中央要素を対象として計算した。なお、ク ラックひずみは、全ひずみから弾性ひずみを差し引き、 要素の代表長さとかけ合わせたものとした。要素代表長 さは要素と等価な体積をもつ球の直径とした。クリー プ・付着を無視したモデルはほぼ均一なひび割れ幅の分 布である。Cut-off モデルは上部に 0.3mm 程度のひび割れ

が発生しているが,JSCE モデルには見られない。これは 柱外側に発生したひび割れが,破壊エネルギーの考慮に より進展が遅れ,内側まで進展しなかったためである。

5. まとめ

鉄筋コンクリートの材齢依存付着すべりおよびクリー プ特性を考慮した三次元 FEM 解析を実施した。その結 果,クリープひずみが鉄筋近傍のコンクリートの応力を 低減すること、付着すべりが部材端部の応力を低減させ ることを確認した。また、付着およびクリープの影響に よりひび割れが部材中央付近に集中することを解析的に 表現した。ひび割れ幅に関しては、破壊エネルギーの影 響が大きいことから、破壊エネルギーの材齢依存性の考 慮に課題があることがわかった。

謝辞

研究の遂行にあたり, 白井伸明日本大学名誉教授より

多くのご助言を戴きました。ここに謝意を表します。

参考文献

- 杉江和,丸山一平::超高強度コンクリートの自己 収縮が付着性状に及ぼす影響に関する基礎的研究 日本建築学会大会学術講演梗概集 pp.797-798 2012.9
- 玉野慶吾、中村光、国枝稔、上田尚史:高強度コン クリートを用いた PRC 梁部材の時間依存挙動に関 する解析的評価 プレスレストコンクリート技術協 会 第 20 回シンポジウム論文集 2011.10
- 渡邊湊, 堀川真之, 田嶋和樹, 白井伸明: 3 次元 FEM 解析による超高強度コンクリートの若材齢ひび割 れ発生時期と位置の評価 コンクリート工学年次論 文集, Vol.38, No.2, pp.583-588,2016
- 4) Naganuma, K., Yonezawa, K., Kurimoto, O. and Eto, H.: Simulation of nonlinear dynamic response of reinforced concrete scaled model using three-dimensional finite element method, Proceedings of the 13th World Conference on Earthquake Engineering, Paper No.586, 2004
- 5) 土木学会: コンクリート標準示方書 設計編, 2012
- Bazant.Z.P, Osman.E, : Double power law for basic creep of concrete, Materials and Structures, RILEM, Paris, Vol.9, pp.3-11, 1976
- 7) 萩原伸治、中村成春、桝田佳寛、河野政典:高強度 コンクリートの若材齢における力学特性と圧縮お よび引張クリープ挙動に関する実験的研究 コンク リート工学論文集, Vol.11, No.1, pp.39-50,2000.1
- 8) 寺本 篤史, 丸山 一平: 超高強度コンクリートの付着応力-すべり関係に及ぼす収縮量の影響 コンク リート工学年次論文集, Vol.34, No.1, 2012
- 三村陽一,吉武勇,森本公典,浜田純夫:若材齢コ ンクリートと異形鉄筋の局部付着特性に関する実 験的研究 土木学会論文集 E Vol63,No.3,pp.410-423, 2007.7
- 片寄哲務,高森直樹,西田浩和,寺岡勝:高強度コンクリートの若材齢時における力学特性と自己収縮挙動 コンクリート工学年次論文集, Vol.28, No.1, 2006
- 日本建築学会:マスコンクリートの温度ひび割れ制 御設計指針(案)・同解説,2008
- 12) 日本建築学会:鉄筋コンクリート造建築物の収縮ひ び割れ制御設計・施工指針(案)・同解説,2006.2
- 13) 寺岡勝,高森直樹:若材齢時における超高強度コン クリートの付着特性 日本建築学会中国支部研究 報告集, Vol.32,2009,3