# 論文 反曲点位置の高い柱型のない RC 造壁の耐震性能及び終局耐力評価 方法に関する研究

# 魏 丞瑾\*1·孫 玉平\*2·竹内 崇\*3·直川 周平\*4

要旨:中高層建物に用いた場合の X 形配筋した柱型のない RC 造壁の靱性と耐力を把握するために,片持ち 形式の曲げモーメント分布を受ける 3 体の壁試験体に対し,一定軸力下での正負交番の繰り返し水平力の載 荷実験を行った。その結果,集中鉄筋を X 形配筋した試験体は平行配筋した試験体よりコンクリートの崩落 が壁脚から離れた位置に集中する傾向が見られ,変形性能が劣ることが明らかになった。また,反曲点位置 の高い柱型のない RC 造壁の強度評価方法の検討を行い,X 形配筋した RC 造壁の終局曲げ耐力については, 壁脚部で決定されない可能性があり,終局曲げ耐力の高さ方向分布を明らかにする必要があることを示した。 キーワード:柱型のない RC 壁,片持ち載荷,X 形配筋,終局耐力,曲げ耐力分布

# 1. はじめに

現在,建物の耐震性能確保のために欠かせない部材と して広く使用されているRC造耐力壁の多くは,両端柱付 き壁である。2010年に改訂されたRC造計算規準<sup>1)</sup>では, 耐力壁の柱型の推奨規定が緩和され,柱型のない耐力壁 の許容応力度設計法が提示されたので,日本においても 柱型のない耐力壁が許容されるようになっている。

柱型のない耐力壁は柱型のでっぱりが出ないため,建 築空間を有効に活用できるほか,採光口や通路を容易に 設けることが出来るといった利点があり,耐震性能を確 保しながらも,建物の利便性や快適性を高めることがで きる有効な構造要素として活用することが期待できる。

先行研究 <sup>2)</sup>では, X 形配筋した集中鉄筋を柱型のない 耐力壁に用いることによる靭性向上効果を検証し,集中 鉄筋を X 形配筋した試験体は,平行配筋した試験体と比 べ,せん断破壊が抑制され,非常に高い変形能力を示す ことを明らかにした。しかしながら,この先行研究は, 中低層建築物に単層壁として用いた場合を想定して,曲 げモーメント分布が逆対称分布となる載荷形式での検討 であった。X 形配筋した柱型のない RC 造耐力壁を中高 層建物内に連層壁として用いる場合は,壁に作用する曲 げモーメントの反曲点は柱頭付近あるいはそれ以上の高 さに位置すると考えられるが、そのような状況下におけ る X 形配筋の効果に関する検討は行われていない。

そこで本論では,X 形配筋した柱型のない RC 造壁を 中高層建物に用いた場合の耐震性能を明らかにすること を目的として,中高層建物に用いた場合を模擬した片持 ち形式の水平加力載荷により,集中鉄筋をX 形配筋した 耐力壁と平行配筋した反曲点位置の高い耐力壁の耐震性 能を実験的に検討すると同時に,X 形配筋の効果を発揮 できる構造要件を探る。また,片持ち形式の水平加力を 受ける柱型のない壁の終局耐力評価方法に関する検討を 行った。

# 2. 実験概要

#### 2.1 試験体概要

図-1 と表-1 に試験体の配筋詳細と一覧を示す。試験体は実験室の載荷能力を加味して、厚さ150mm,壁せい600mm,高さ1000mmのRC造壁とした。試験体は3体で、実験変数は集中鉄筋の種別および配置方法である。
 試験体WC-XDは、D6帯筋(間隔:75mm)で束ねた4本のD13異形鉄筋を集中鉄筋として、X形配筋したも

| 試験体   | t D  |      | h    | $f_c$      |          | 縦筋    |                     | 集中鉄筋  |             | 横筋      |              | $Q_{exp}$    |          |      |
|-------|------|------|------|------------|----------|-------|---------------------|-------|-------------|---------|--------------|--------------|----------|------|
|       | (mm) | (mm) | (mm) | $(N/mm^2)$ | a/D      | n     | p <sub>wv</sub> (%) | 配筋    | $p_{s}(\%)$ | 配筋      | 配筋形式         | $p_{wh}(\%)$ | 配筋       | (kN) |
| WC-XD | 150  |      |      | 35.6       | 2.0 0.15 | 0.251 | 10 D6               |       | 8-D13       | VI      |              |              | 195      |      |
| WC-XU |      | 600  | 1000 | 35.0       |          | 0.15  | 0.551               | 10-D0 | 0.56        | 8-U12.6 | Δ <i>Π</i> 2 | 0.68         | 16-D6@65 | 229  |
| WC-PD |      |      |      | 31.2       |          | 0.211 | 6-D6                |       | 8-D13       | 軸平行     | 1            |              | 192      |      |

表-1 試験体一覧

ここに, t: 壁の厚さ, D: 壁の全せい, h: 壁の高さ,  $f_c$ : コンクリート圧縮強度, n: 軸力比 (=NtDfc, N: 軸力),  $p_{wv}$ : 縦筋比,  $p_s$ : 集中鉄筋比,  $p_{wh}$ : 横補強筋比,  $Q_{exp}$ : 最大水平耐力実験値(正負平均)

| *1 | 神戸大学大学院 | 工学研究科建築学専攻 | 大学院 | 完生 | (学生会員) |       |
|----|---------|------------|-----|----|--------|-------|
| *2 | 神戸大学大学院 | 工学研究科建築学専攻 | 教授  | 工博 | (正会員)  |       |
| *3 | 神戸大学大学院 | 工学研究科建築学専攻 | 助教  | 博士 | (工学)   | (正会員) |
| *4 | 神戸大学大学院 | 工学研究科建築学専攻 | 大学院 | 完生 | (学生会員) |       |
|    |         |            |     |    |        |       |



のである。縦筋は D6 異形鉄筋を 130mm の間隔で 10 本 ダブル配置し、横筋は 135 度フックのフープ筋を 65mm 間隔で 16 本配置した。試験体 WC-XU は、試験体 WC-XD と同様の配筋形式であり、集中鉄筋に U12.6(SBPDN 1275/1420)を用いた。試験体 WC-PD は集中鉄筋を平行配 筋した試験体で、壁断面の両端に D13 異形鉄筋を 4 本ず つ集中鉄筋として配筋した。壁の横筋は試験体 WC-XD と同様で、縦筋は断面中央から 130mm 間隔で 6 本ダブ ル配置した。また壁筋の面外変形を抑制するために、中 央の縦筋と断面の両端から 2 列目の主筋に対して D6 の サブタイを設けたが、X 形配筋した試験体においては、 このサブタイは X 形配筋と干渉するため設けていない。

縦筋 D6 は上下端では直線定着し,集中鉄筋 D13 は主 筋端部を鋼板に溶接して定着し,集中鉄筋 U12.6 は端部 で鋼板を介してボルト接合することで機械式定着とした。 使用した鋼材の引張試験結果を表-2 に示す。コンクリ ートは呼び強度 24N/mm<sup>2</sup> のレディーミクストコンクリ ートを使用し,各試験体の載荷日に行ったシリンダー圧 縮強度を表-1 に示す。各試験体に導入する軸力比は 0.15 とした。

## 2.2 載荷方法・計測方法

図-2に載荷装置を示す。1000kN油圧ジャッキで所定 の圧縮軸力を与えた状態で、2本の500kNジャッキを用 いて繰り返し水平力を作用させた。試験体は下スタブと 下載荷梁を PC 鋼棒で固定して、上スタブと水平ジャッ キを連結した。上スタブとジャッキの間に、回転中心が 水平力載荷高さを維持するようなかまぼこ球座を設けた。 載荷は部材角制御による正負交番繰り返し載荷とし、図 -3 に示す載荷プログラムに従う。水平変位と鉛直変位 は図-4 に示す位置に設置した変位計により計測した。 鉄筋のひずみは、図-1 中に赤と青のマーカーで示す位 置にて、ひずみゲージを用いて計測した。

| 表一2 鉄 | 筋の材 | 料特性 |
|-------|-----|-----|
|-------|-----|-----|

|       | 種別                 | $f_y$<br>N/mm <sup>2</sup> | $\varepsilon_y \times 0.01$ | $f_u$<br>N/mm <sup>2</sup> | E <sub>s</sub><br>kN/mm <sup>2</sup> |
|-------|--------------------|----------------------------|-----------------------------|----------------------------|--------------------------------------|
| D6    | SD295A             | 407                        | 0.21                        | 545                        | 191                                  |
| D13   | SD345              | 403                        | 0.21                        | 581                        | 184                                  |
| U12.6 | SBPDN<br>1275/1420 | 1372                       | 0.84                        | 1469                       | 215                                  |

ここに,  $f_y$ :降伏強度,  $\varepsilon_y$ :降伏強度時ひずみ,  $f_u$ :引張強さ,  $E_s$ :ヤング係数



## 図-3 載荷プログラム



# 3. 実験結果

## 3.1 ひび割れ及び破壊性状

図-5に部材角 R=0.01,0.02,0.03,0.04rad.の載荷サイク ルピーク点で観察された各試験体のひび割れ状況を示す。 なお、図中のグリッド間隔は 50mm である。赤線は正側 の載荷時に生じたひび割れ、青線は負側の載荷時に生じ たひび割れ、黒い部分はコンクリートの崩落を示す。

試験体 WC-XD は部材角 R=0.00125rad.のサイクルの載 荷途中,水平力 75kN で曲げひび割れが発生し,R =0.0025rad.のサイクルでせん断ひび割れが発生した。こ こで,新たに発生あるいは曲げひび割れから進展したひ び割れで、水平面となす角が30度程度以上のものを、せ ん断ひび割れと判断した。部材角 R =0.0375rad.のサイク ルで壁脚部の D6 縦筋が降伏し, R =0.005rad.の載荷サイ クルで X 形配筋された集中鉄筋が降伏した。部材角 R =0.01rad.の載荷サイクルで壁脚部の圧縮側コンクリート に縦ひび割れが発生し、少量の剥離が生じた。部材角 R =0.015rad.の載荷サイクルで北西面のかぶりコンクリー トが崩落し、R=0.02rad.の載荷サイクルで4隅のD6縦筋 の座屈が確認された。部材角 R =0.025rad.のサイクルで D6 縦筋の破断が生じ、その後、部材角の増大に従って、 コンクリートの剥離が多くなり、最終的に縦筋の内側の コアコンクリートが壁脚部から高さ 350mm のところで 圧壊し、終局となっており、曲げ圧壊型破壊の性状を示 した。

試験体 WC-XU は水平力 55kN で曲げひび割れが発生 し,部材角 *R* =0.0025rad.のサイクルでせん断ひび割れが 確認された。部材角 *R* =0.00375rad.のサイクルで D6 縦筋 が降伏した。部材角 *R* =0.01rad.のサイクルで壁脚部の圧 縮側コンクリートに縦ひび割れが発生し,*R*=0.015rad.の サイクルでかぶりコンクリートの崩落が確認された。部 材角 *R* =0.02rad.のサイクルにおいて,かぶりコンクリー トの崩落が進行し,縦筋の座屈が確認された。部材角 *R* =0.03rad.のサイクルで,縦筋が破断し,高さ 100~450mm 間のかぶりコンクリートおよび,高さ 250~300mm 間の



図-5 ひび割れ図(北面)

コアコンクリートが大量に崩落し, *R* =0.035rad. のサイ クルで軸力の維持が困難となったため載荷を終了した。 最終的な破壊状況としてはコアコンクリートの圧壊によ る曲げ型破壊であった。また X 形配筋の U12.6 に生じた ひずみは最大で 0.4%程度で,降伏に至らなかった。

試験体 WC-PD は水平力 75kN で曲げひび割れが発生 し,部材角 *R*=0.00125rad.のサイクルでせん断ひび割れが 確認された。部材角 *R*=0.05rad.のサイクルにおいて,主 筋 D13 が降伏し,縦ひび割れが確認された。部材角 *R*=0.0075rad.のサイクルでコンクリートの剥離が発生し, *R*=0.025rad.のサイクルでかぶりコンクリートが崩落した。 部材角 *R*=0.03rad.の載荷サイクルで D13 集中鉄筋の座屈 が見られ, *R*=0.04rad.の載荷サイクルで壁脚部のコアコン クリートが崩落し,2列目のD13の座屈が確認された。 最終的な破壊状況としては,平行配筋が座屈し,壁脚部 から高さ 300mm までのコンクリートが剥離し,曲げ型 破壊の性状を示した。

# 3.2 履歴性状

図-6 に実験で得られた各試験体の水平力─部材角関 係を示す。図中の○は試験体の最大耐力点を、□は曲げ ひび割れが発生した点を、△は試験体の集中鉄筋が降伏 し始める点を表す。赤い点線はPA効果による耐力減少を 考慮した終局曲げ耐力で、その計算詳細は後述する。

試験体 WC-XD は部材角 *R*=0.0075rad.のサイクルで水 平力 178kN にて X 形主筋が降伏した。部材角 *R*=0.01rad. で最大耐力に達した後, コンクリートの剥離と崩落によ って,部材角の増大に伴って水平耐力が低下したが,部 材角 *R*=0.03rad.まで最大耐力の 8 割を保持した。

試験体 WC-XU は集中鉄筋 U12.6 が降伏しなかったが, 部材角 R=0.015rad.で最大耐力に達した後,耐力が低下し, 部材角 R=0.025rad.のサイクルまで最大耐力の 8 割を保持 した。耐力低下はコンクリートの圧壊によるもので,コ ンクリートの損傷が試験体 WC-XD よりも速く進行した ため,耐力低下の勾配が急になったと考えられる。

試験体 WC-PD は部材角 *R*=0.005rad.のサイクルで水平 力 174kN で主筋 D13 が降伏した。部材角 *R*=0.015rad.で 最大耐力を示し,部材角 *R*=0.04rad.まで最大耐力の 8 割 を保持しており,高い靭性を示した。

3体の試験体はいずれも曲げ破壊の性状を示し, X形 配筋の試験体より平行配筋の試験体の方が高い靭性を示 した。平行配筋試験体とX形配筋試験体の靭性の違いは コンクリートの損傷の進行速度の差によるものと考えら れる。コンクリートの損傷速度に差が生じた要因として, 集中鉄筋によるコンクリートの拘束域の形成が影響して いると考えられ,平行配筋した試験体は断面端部に集中 鉄筋による圧縮応力を抵抗する拘束域を持つため,曲げ モーメントによる圧縮力を受けた際に粘り強く抵抗でき るが,X形配筋した試験体は拘束域が試験体の対角方向 に向かって延びているため,壁脚部以外は断面端部に拘 束域が存在せず,コンクリートの損傷が早期に生じたも のと考えられる。

#### 3.3 軸方向変形

図-7 に各試験体の軸方向変形-部材角の関係を示す。 軸方向変形は各部材角での載荷サイクルの終了後の部材 角0の時点における上下スタブ間の鉛直変形量であり, 試験体が伸びる方向を正としている。

試験体 WC-XD は,部材角 R=0.0075rad.で集中鉄筋が 降伏したため軸方向変位が安定して伸び続け,縦筋の破 断が生じた部材角 R=0.025rad.からは,軸方向変位が縮む 傾向へと変化した。試験体 WC-XU は集中鉄筋が降伏し なかったが,部材角 R=0.01rad.までは試験体が少し伸び, 部材角 R=0.01 以降,コンクリートの剥離の進行に伴っ て,軸方向変位が圧縮方向へ減少していき,部材角 R=0.02rad.でコンクリートが崩落し始めると,試験体は大 きく縮んでいった。

試験体 WC-PD は、部材角 R=0.005rad.において集中鉄 筋が降伏した後、部材角の増大に伴って部材が伸びてい った。部材角 R=0.03rad.において集中鉄筋に座屈が生じ てからは、試験体が縮む傾向に転じた。



## 3.4 エネルギー吸収性能

等価粘性減衰定数(h<sub>eq</sub>)を用いて試験体のエネルギー 吸収性能を評価した。図-8 に各試験体の各載荷サイク ルのループにおける等価粘性減衰定数を示す。

部材角 *R*=0.005rad.までは、3 体の heq は同様に推移し、 その後、試験体 WC-PD が最も高いエネルギー吸収能力 を示した。試験体 WC-XD は部材角 *R*=0.02rad.まで各目 標部材角での1回目の載荷サイクルにおいては、試験体 WC-PD よりやや低い値を示すが、2回目の載荷サイクル では大きく heq が低下する傾向が見られた。これは試験 体 WC-XD では繰返し載荷によりコンクリートの損傷が 進行していたためと考えられる。試験体 WC-XU は損傷 が早期に始まった他、集中鉄筋の降伏が見られなかった ため、他の試験体よりエネルギー吸収量が小さかったも のと考えられる。

## 4. ひび割れ発生強度及び終局耐力の評価

柱型のない RC 造耐力壁を扁平な長方形断面を有する 鉛直部材として,現行設計規準における柱と耐震壁用の 設計式を用いて,曲げひび割れ強度,せん断ひび割れ強 度,および終局耐力の評価を行った。

曲げひび割れ強度  $Q_{mc}$ , せん断ひび割れ強度  $Q_{sc}$ , 及び 曲げ終局耐力  $Q_{mu}$ は文献 3)に記されている以下の計算式 を用い, せん断終局耐力  $Q_{su}$ は修正大野・荒川 mean 式<sup>3)</sup> を用いて算定した。

$$Q_{mc} = \frac{M_{mc}}{a}, \quad M_{mc} = 0.56\sqrt{f_c}Z_e + \frac{ND}{6}$$
 (1)

$$Q_{sc} = \left(1 + \frac{\sigma_0}{14.7}\right) \left\{\frac{8.5k_c(f_c + 49)}{a/D + 1.7}\right\} tj$$
(2)

$$Q_{mu} = \frac{a_i \sigma_y l_w + 0.5 a_w \sigma_{wy} l_w + 0.5 N l_w}{a}$$
(3)

$$Q_{sw} = \left\{ \frac{0.068 p_{ie}^{0.23} (f_c + 18)}{\sqrt{a/D + 0.12}} + 0.85 \sqrt{p_{wh} \sigma_{wh}} + 0.1 \sigma_0 \right\} tj$$
(4)

ここに、 $f_c$ はコンクリートの圧縮強度、 $Z_e$ は縦筋を考慮 に入れた壁の断面係数、j=7/8D、Dは壁の断面全せい、tは壁の厚さ、aはせん断スパン、 $\sigma_0$ は平均軸応力、 $k_c$ は 壁断面せいに対する補正係数、dは壁の有効せい、 $a_t$ は平 行配筋した引張集中鉄筋の総断面積、 $\sigma_y$ は集中鉄筋の降 伏応力度、 $l_w=0.9D$ 、 $a_w$ は縦筋の総断面積、 $\sigma_{wy}$ は縦筋の 降伏応力度、 $p_{te}$ は等価引張鉄筋比、 $p_{wh}$ は横筋比、 $\sigma_{wh}$ は 横筋の降伏強度である。



また, X 形配筋した集中鉄筋による曲げ終局耐力 Qxmu 及びせん断終局耐力 Qxmu は文献 4)を参考して, 次式によって評価する。

$$Q_{xmu} = {}_{d} a_{td} \sigma_{y} \sin \theta \frac{d_{x}}{a}$$
(5)

$$Q_{xsu} = 2_d a_{td} \sigma_y \cos\theta \tag{6}$$

ここに、 $da_t$ は片側のX形集中鉄筋の全断面積、 $d\sigma_v$ は X形集中鉄筋の降伏強度, dxは壁脚部における X形鉄筋 束の重心間の距離, θは X 形鉄筋束が水平面となす角で ある。試験体 WC-XU と WC-XD の終局耐力は, 式(5)と (6)の X 形配筋による各耐力を曲げ及びせん断終局耐力 に単純累加して求めた。前述した計算式によって、試験 体の諸強度の計算値と実験値の比較を表-3 に示す。曲 げひび割れ強度とせん断ひび割れ強度に関しては,式(1) と(2)による計算結果は比較的精度よく評価している。終 局耐力に関して,表-3の通り,試験体 WC-XD と試験 体 WC-PD は計算値と実験値の差異が 10%以内であり, 耐力を精度良く評価できたと言える。しかしながら、試 験体 WC-XU は、計算値が実験値を4割程度過大評価す る結果となった。これは、上記の計算では壁脚部の断面 で試験体の耐力が決定されることを想定しているが、前 述の破壊性状で述べたように、試験体 WC-XU のコンク リートの損傷が集中した位置は, 壁脚部から高さ 300mm 程度の位置であり、計算式で想定した断面とは異なる高 さの断面で試験体の耐力が決定されたためと考えられる。 集中鉄筋が X 形配筋された試験体においては, 壁面の高 さ方向位置によって断面内の集中鉄筋の位置が異なるた め、断面の曲げ耐力が高さによって変化する。

そこで,集中鉄筋を X 形配筋した試験体 WC-XD と WC-XU に対して,高さ方向に沿う各壁断面の曲げ耐力 の分布を求めた。各断面の曲げ耐力は,NewRC ブロック

| 試験体   | Q <sub>mc</sub><br>(kN) | Q <sub>expmc</sub><br>(kN) | 比較<br>(Q <sub>expmc</sub> /Q <sub>mc</sub> ) | Q <sub>sc</sub><br>(kN) | Q expsc<br>(kN) | 比較<br>(Q <sub>expsc</sub> /Q <sub>sc</sub> ) | Q <sub>mu</sub><br>(kN) | Q <sub>su</sub><br>(kN) | Q <sub>expu</sub><br>(kN) | 比較<br>(Q <sub>expu</sub> /Q <sub>u</sub> ) |
|-------|-------------------------|----------------------------|----------------------------------------------|-------------------------|-----------------|----------------------------------------------|-------------------------|-------------------------|---------------------------|--------------------------------------------|
| WC-XD | 67                      | 75                         | 1.12                                         | 142                     | 130             | 0.92                                         | 211                     | 424                     | 194                       | 0.92                                       |
| WC-XU | 66                      | 55                         | 0.83                                         | 162                     | 138             | 0.85                                         | 382                     | 837                     | 232                       | 0.61                                       |
| WC-PD | 60                      | 75                         | 1.25                                         | 109                     | 95              | 0.87                                         | 204                     | 291                     | 189                       | 0.93                                       |

表-3 実験結果と計算値の比較一覧

Qexpmc:曲げひび割れ発生時荷重実験値, Qexpsc:せん断ひび割れ発生時荷重実験値, Qexpu:最大水平耐力実験値, Qu=min(Qmu, Qsu)



法 <sup>5</sup>を使って計算した。縦筋と集中鉄筋は完全弾塑性体 として,鉄筋の付着すべりは考慮していない。X 形配筋 の断面積には材軸直交断面の鉛直方向投影面積を用いた。 試験体 WC-XD と WC-XU の曲げ耐力の高さ方向分布と, 実験における最大耐力時の曲げモーメント分布の比較を 図-9に示す。

曲げ耐力の分布は、両試験体共に、X形配筋した集中 鉄筋が交差する壁中央高さで最も曲げ耐力が低く、壁頭 壁脚部に向かって2次関数的に増加する傾向を示した。 2 体の試験体の曲げモーメント分布を比較すると,壁頭 壁脚部においては、集中鉄筋の降伏強度が大きく影響す るため、曲げ耐力の値の差が大きいが、壁中央高さにお いては、X形配筋の影響がほとんど現れないため、両者 に差異がない。実験結果における最大耐力時の曲げモー メント分布と曲げ耐力分布を比較すると、試験体 WC-XD については、壁脚部において実験の最大耐力時の曲 げモーメントと計算曲げ耐力が良く対応していることが わかる。試験体 WC-XU については、高さ 300mm で最も 実験の曲げモーメントと計算曲げ耐力が近くなっており, この高さにおける曲げモーメントの実験/計算の値は 0.95 と、よく対応していることがわかる。この結果は、 実験においてコンクリートの損傷も高さ 300mm 程度を 中心に広がっていたこととも対応しており, 試験体 WC-XU については、この高さの断面で試験体の耐力が決定 されたものと考えられる。以上のことから、集中鉄筋を X 形配筋した柱型のない壁が、単曲率の曲げモーメント 分布を受ける場合、試験体の耐力が壁脚部で決定されな い可能性があることが伺える。

## 5. 結論

本研究では、片持ち載荷を受ける柱型のない RC 造耐 力壁の耐震性能の解明およびその評価方法の確立を目的 として、集中鉄筋を X 形配筋した耐力壁と平行配筋した 耐力壁に対する繰り返し載荷実験を行い、その耐震性能 および終局耐力の評価法に関する検討を行った。結論を 以下にまとめる。

- 集中鉄筋を平行配筋した試験体は、部材角 R=0.04% まで最大耐力の8割を維持するなど、優れた変形性 能を示した。
- 2) 集中鉄筋をX形配筋した試験体は、平行配筋した試 験体と同程度の耐力を発揮したが、曲げ圧縮力を受ける領域でのコンクリートの損傷が早期に進展したため、平行配筋した試験体よりやや靭性に劣る結果となった。
- 3) 柱型のない RC 造耐力壁の終局耐力が壁脚部で決定 される場合は、現行規準の設計式によって精度よく 評価することができる。
- 4) 集中鉄筋をX形配筋した柱型のない壁が、単曲率の 曲げモーメント分布を受ける場合、試験体の耐力が 壁脚部で決定されない可能性があることに注意す る必要があり、その場合の耐力は、NewRCブロック 法による曲げ耐力の高さ方向分布より評価できる。 本研究成果は本実験条件以外でも適用できると考え られ、研究を発展させることで、様々な境界条件下の壁 の耐震性能を評価できると考えられる。

## 謝辞

本研究を進めるにあたり,神戸大学技術職員・金尾優 氏,同大学大学院生・福原優美子氏・藤谷卓也氏から多 大な協力を得た。本実験の試験体に使用した超高強度鉄 筋は高周波熱錬株式会社より御提供頂いた。ここに謝意 を表します。

## 参考文献

- 日本建築学会:鉄筋コンクリート構造計算規準·同解 説,pp.274-275,2010
- 直川周平,孫玉平,竹内崇,藤永隆:X形配筋を施 した柱型のない RC 造壁の耐震性能に関する基礎研 究,コンクリート工学年次論文集,vol.38, No.2, pp.421-426, 2016.7
- 3) 建築物の構造関係技術基準解説書, pp.648-695, 2015
- 日本建築学会:鉄筋コンクリートX形配筋部材設計 施工指針・同解説, p.44,2010
- 5) 孫玉平,崎野健治, A.Aklan:正方形鋼管横補強鉄筋 コンクリート柱の曲げ終局強度の算定法,コンクリ ート工学年次論文集, vol.18, No.2, pp.131-136, 1996.7