論文 高強度 PC 桁に生じた ASR の岩石学的観察とその劣化原因の解明

安藤 陽子*1・広野 真一*2・片山 哲哉*3・久保 善司*4

要旨:約30年が経過した高強度コンクリートのPC 桁に,軸方向に延びるひび割れが多数確認された。ASR の発生は細骨材の火山岩に顕著に,粗骨材の変斑れい岩にも中程度に認められた。使用セメントは早強ポル トランドセメントと推測され,AE 気泡のような微細な気泡は認められず,設計基準強度 50N/mm² で作製さ れたため,かなり密実なコンクリートであった。コンクリート全体のアルカリ総量は3kg/m³程度であり,そ の大半はセメントに由来すると推測された。ASR による劣化は,主に細骨材の火山岩に含まれる急速膨張性 の反応性鉱物に起因し,粗骨材に含まれる微晶質~隠微晶質石英も少量寄与していた。 キーワード:アルカリシリカ反応,火山岩類,変斑れい岩,急速膨張性,遅延膨張性

1. はじめに

設計基準強度が 50N/mm² で作製された高強度コンク リートの PC 桁(桁高さ 550mm, かぶり 65mm)が沖縄の 海沿いの水路に架かる 2 つの橋(間隔約 50m)で供用され て約 30 年が経過した。橋梁1の桁の下面および側面には 軸方向に延びる多数のひび割れが認められた(写真-1)。 一方,橋梁2では軸方向のひび割れが下面および側面に 数本認められる程度であった。本論文では,2橋梁の PC 桁から採取したコンクリートを用いてアルカリシリカ反 応(以下,ASR)の調査として,偏光顕微鏡と SEM-EDS による岩石学的観察,および促進膨張試験を行った。ま た,塩化物イオン濃度測定による海からの飛来塩分の有 無,総プロ法によるアルカリ総量の測定も行ない,ひび 割れ発生原因の解明を行った。

写真-1 橋梁1下面に見られる PC 桁のひび割れ

2. 試験の方法

2.1 調査対象試料

ASR 調査対象試料は,橋梁1の右岸側(橋梁1右岸), 左岸側(橋梁1左岸)からと,橋梁2の左岸側(橋梁2左岸) の計3箇所から,PC鋼線を切断しないようPC桁上面か らアスファルトを除去してコンクリートコア(φ50mm× L130mm)を採取した。なお、いずれも橋の両端から2列 目の桁から採取した。塩化物イオン濃度測定には、橋梁 1の劣化部(ひび割れのある桁)と健全部(ひび割れのない 桁)、および橋梁2の劣化部(ひび割れのある桁)のPC桁 下面より採取したドリル粉末試料を用いた。

2.2 調査項目

(1) 偏光顕微鏡観察

コンクリートコアの切断面において、ASR の発生が認 められる骨材を中心に鏡面研磨薄片 (25×35mm,厚さ 0.02mm)を作製し、骨材の岩種、アルカリシリカ反応の 有無・進行度、ひび割れ等の変状などの偏光顕微鏡観察 を行った。ASR の進行段階は、片山の方法 ^{1),2)}に従い、 1) 骨材の反応リムの形成 \rightarrow 2) 骨材周辺のブル・ゲル の取巻き \rightarrow 3) 骨材内のひび割れ形成・ゲル充填 \rightarrow 4) 骨材を取巻くセメントペースト内のひび割れ形成・ゲル 充填 \rightarrow 5) 骨材から離れたセメントペーストの気泡内 へのゲルの沈殿、の5段階で評価をした。このような薄 片によるコンクリート組織の顕微鏡観察の結果に基づき、 劣化進行度を3段階 (軽微・中程度・顕著)で推定した。

(2) 促進膨張試験(アルカリ溶液浸漬法)

促進膨張試験(アルカリ溶液浸漬法)は、公益社団法 人日本コンクリート工学会「アルカリ溶液に浸漬したコ ア試料のASRによる膨張率の測定法(案)(アルカリ溶液 浸漬法)」³⁾に準拠して実施した。実構造物から採取され たコア試料の判定は、一般には促進養生期間21日にて、 膨張率0.1%以上を膨張性あり(有害)、それ未満を膨張性 なし(無害)とする^{4,5)}。

(3) 塩化物イオン濃度測定

塩化物イオン濃度測定は、「JIS A 1154 硬化コンクリート中に含まれる塩分の分析方法」のうち、塩化物イオ

*1 (株)太平洋コンサルタ	マント	解析技術部	(正会員)		
*2(株)太平洋コンサルタ	マント	解析技術部	博士(工学)	(正会員)	
*3(株)太平洋コンサルタ	マント	解析技術部	博士(理学)	(正会員)	
*4 金沢大学 理工研究	域 環	境デザイン学	系 准教授	博士(工学)	(正会員)

ン電極を用いた電位差滴定法とした。塩化物イオン量 (kg/m³)は, 採取したコアの平均単位容積質量約 2395(kg/m³)を用いて計算した。

(4) 水溶性アルカリ量

コンクリート中の水溶性アルカリの抽出は,総プロ法 のに準じて行った。ただし,骨材からの溶出アルカリを セメント起源と混同しないように,数値はアルカリの回 収率補正は行なわず,生のデータを用いた。

(5) 反応生成物の SEM 観察・EDS 定量分析

電子顕微鏡観察(SEM)には偏光顕微鏡で観察を行った 鏡面研磨薄片に炭素蒸着したものを用いた。電子顕微鏡 観察には日立インストロメント社製(SU5000)を, EDS 定 量分析には SEM に付属の OXFORD 社製(X-MAX50)を使 用した。測定条件は測定電圧:15kV, ビーム電流:0.76 nA, 測定時間:30秒, デッドタイム: 25%とし, SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, SO₃, P₂O₅を定 量分析し, 100%にノーマライズせずに XPP 補正した値 を用いた。

コンクリート中に ASR で生じた ASR ゲルの組成と, エーライト・ビーライトの水和により生じた CSH ゲルの 組成を片山の方法¹⁾に従い, [Ca/Si]-[Ca]/[Na+K]図にプロ ットした。ASR ゲルの組成線の延長と CSH ゲルの組成 線が交錯する ASR の「収斂点」からの ASR ゲルの組成 線の隔たりを確認し, ASR がどの程度終息に近づいてい るかの把握を行った。

3. 結果

3.1 偏光顕微鏡観察

コアの切断面を写真-2 に示し、一部拡大を写真-3 に示す。3 試料とも切断面において粗骨材、細骨材に実 体顕微鏡下で ASR による膨張ひび割れが多く確認され た。 鏡面研磨薄片の偏光顕微鏡写真を**写真-4** に, 観察の 結果を表-1に示す。3 試料とも骨材は同一であり, 粗骨 材はすべて変斑れい岩からなる砕石であった。変斑れい 岩は, 原岩(斑れい岩)の組織は保存されたまま, 構成 鉱物の一部が変成鉱物に置き換えられた, 一種の変成岩 である。細骨材は主に火山岩類(安山岩・安山岩質溶結凝 灰岩など)と花崗岩起源の岩片・鉱物片(石英・長石・黒 雲母など)とからなる砂であった。細骨材の砂に含まれ

写真-2 コンクリートコア切断面 上:橋梁1右岸,中:橋梁1左岸,下:橋梁2左岸

写真-3 切断面拡大 (橋梁2左岸) 左側:PC桁上面

写真-4 偏光顕微鏡写真(単ニコル) a:セメントペースト中のひび割れ(橋梁1右岸), b:変斑れい岩の ASR(橋梁1左岸), c:安山岩の ASR(橋梁1左岸), d:安山岩質溶結凝灰岩の ASR(橋梁1左岸)

る安山岩は未変質ないしごく軽微な変質のものが大半で ある。このような安山岩は、斜長石、輝石、角閃石、不 透明鉱物などの斑晶を含み、石基は急冷部でガラス、徐 冷部ではクリストバライトおよびトリディマイトを含ん でいる。安山岩質溶結凝灰岩は、溶結した火山ガラス片 や軽石片からなる基質中に斜長石、輝石、角閃石などの 結晶片を含むものである。基質にガラスを多量に含む。 また気孔や空隙中にクリストバライトが晶出している粒 子もある。

ASR は細骨材の火山岩類(安山岩・安山岩質溶結凝灰 岩など)に顕著に, 粗骨材の変斑れい岩に中程度に認めら れた。反応状況は, 橋梁1においてコアの軸方向に直交 して骨材内部からセメントペーストに向かって膨張ひび 割れを生じている状態がかなり認められ, ひび割れを伝 ってコンクリート中の気泡に ASR ゲルが沈殿している 状態がひび割れの本数に対応し3割程度認められた。橋 梁2においては骨材からセメントペーストに進展するひ び割れが認められるが,橋梁1よりもひび割れは少なく, ひび割れを伝って ASR ゲルが気泡を充填する状態は1 割程度であった。反応性鉱物は変斑れい岩では微晶質~ 隠微晶質石英, 火山岩類の砂ではクリストバライト・ト リディマイト・ガラスであった。これらの観察結果より, 橋梁1右岸, 橋梁1左岸とも反応の程度は中程度~顕著 で加速期に相当, 橋梁2左岸は中程度で進展期~加速期 に相当すると判断される。なお,3 試料ともセメントペ ーストに AE 気泡のような微細な気泡は認められず,非 AE コンクリートと考えられる。セメントペーストに高 炉スラグ微粉末やフライアッシュは認められないことか ら,使用セメントはポルトランドセメントであり,この セメント粒子はセメントペースト中に非常に密に認めら れた。またセメントの特徴としてビーライトが少なく, エーライトがかなり多く認められ,使用セメントは早強 ポルトランドセメントと見られる。

3.2 促進膨張試験(アルカリ溶液浸漬法)

促進膨張試験(アルカリ溶液浸漬法)結果を図-1 に 示す。今回試験を行った3試料は,促進期間21日でいず れも0.3%以上の膨張量であり有害判定となった。

3.3 塩化物イオン濃度測定

コンクリート中の塩化物イオン濃度試験結果を図-2 に示す。この結果から、塩化物イオンの浸入は PC 桁下 面からひび割れの多い劣化部でも 50mm 程度以内、健全 部では 30mm 以内であることがわかった。いずれも表層 部の濃度は 2kg/m³程度であり、劣化部、健全部ともかぶ り 65mm の鉄筋位置で、発錆の管理限界値とされてきた 現在では安全側の値⁷¹1.2kg/m³には達していない。なお、 上面からの浸入については、今回試験を行なっていない ため不明である。

	アルカリシリカ反応								
構造物									
		山廷	1	2	3	4	5	劣化度	
		右裡	骨材	ペースト	骨材	ペー	評価		
				反応 リム	滲み・取り 巻き	ひび割れ ゲル充填	ひび割れ ゲル充填	気泡 ゲル充填	
	粗骨材	砕石	変斑れい岩	0	0	0	0	0	2
橋梁1右岸 細骨材			安山岩	0	0	0	0	0	3
	砂	安山岩質溶結凝灰岩	0	0	0	0	0	2~3	
		デイサイト	0	0	0	0	0	2	
			苦鉄質片岩			0	0		2
			Ŕ	総合評価					2~3
	粗骨材 砕石	砕石	変斑れい岩	0	0	0	0	0	2
粗骨材 碎石		安山岩	0	0	0	0	0	2~3	
橋梁1左岸	細骨材	砂	安山岩質溶結凝灰岩	0	0	0	0	0	2
			デイサイト	\bigcirc	0	0	0	0	2
			リム 巻き ゲル充填 ゲル充す				2~3		
粗骨材 橋梁2左岸 細骨材	砕石	変斑れい岩	0	0	0	0	+	2	
		細骨材 砂	安山岩	0	0	0	0	0	2
	細骨材		安山岩質溶結凝灰岩	0	0	0	0	0	2
			珪質片岩	0	0	0	0		2
			兼	総合評価					2

表-1 薄片の偏光顕微鏡観察に基づくアルカリシリカ反応の進行状況

観察による評価 アルカリシリカ反応の程度: ◎ 顕著; ○ あり; + 痕跡程度

劣化度の評価: 1 軽微(潜伏期に相当);2 中程度(進展期・加速期に相当);3 顕著(加速期・劣化期に相当)

3.4 水溶性アルカリ量

総プロ法による水溶性アルカリ量の測定結果を表-2 に示す。3 試料ともアルカリ総量は約 3kg/m³程度であっ た。コンクリートのアルカリ総量規制値にほぼ達してい る。

	水溶性アルカリ量 (mass%)			アルカリ総量*	
	Na ₂ O	K ₂ O	Na ₂ Oeq.	(kg/m^3)	
橋梁1右岸	0.086	0.060	0.125	2.99	
橋梁1左岸	0.090	0.068	0.135	3.23	
橋梁2左岸	0.090	0.066	0.133	3.19	

表-2 コンクリートのアルカリ総量

*アルカリ総量の算出に単位容積質量 2395kg/m³を使用。

3.5 ASR ゲルと CSH ゲルの組成

図-3に3試料のASR ゲルの組成と, エーライト・ビ ーライトの水和により生じた CSH ゲルの組成を [Ca/Si]-[Ca]/[Na+K]でプロットした。ASR ゲルの組成は 1 試料に付き, 骨材からセメントペーストに進展するひ び割れ数本を10~30µm間隔で測定した。ASR ゲルとセ

メント粒子の BSE 像を写真-5 に示す。骨材中のひび割 れを充たす ASR ゲルの脈のなかで, セメントペーストに 近い部分では非晶質の ASR ゲルが認められ, 骨材の奥で はロゼット状に結晶化した ASR ゲルが認められた。図ー 3でロゼット状の ASR ゲルの組成は1本の組成線の左端 を占めており、[Ca/Si] 比が 0.3 以下、[Ca]/[Na+K]比が 1 程度である。非晶質な ASR ゲルはアルカリ含有量が高い ものから、カルシウムの含有量が増加して、アルカリの 低いものまであり, 組成の範囲は広い。 非晶質な ASR ゲ ルでは 橋梁 1 右岸で[Ca/Si] =0.3~1.4, [Ca]/[Na+K]= 0.8~30, 橋梁 1 左岸で[Ca/Si] =0.3~1.5, [Ca]/[Na+K] =0.6~60, 橋梁2左岸が[Ca/Si] =0.4~1.2, [Ca]/[Na+K] =2~40 であった。CSH ゲルの組成分析において,橋梁 1 左岸の未水和のエーライトは分析できなかった。未水 和のビーライトは [Ca/Si] =2.1 程度・[Ca]/[Na+K]=50 程 度, 未水和のエーライトは [Ca/Si] =3.0 程度・ [Ca]/[Na+K]=150 程度である。これらが水和して CSH ゲ ルに変化すると、アルカリ(Na, K)を放出するとともに カルシウムを溶脱し、本試料では Ca/Si=1.5 程度, [Ca]/[Na+K]=100-200 程度に収斂することが分かる。なお、 3 試料とも ASR ゲルの組成線は、収斂点には達していな かった。

写真-5 BSE 像 (橋梁1右岸) a: 非晶質 ASR ゲル, b: ASR ゲルロゼット, c: 未水和エーライトとその水和物, d: 未水和ビーライトとその水和物

4. 考察

4.1 反応性鉱物

一般に、反応性鉱物の中で、クリストバライト・トリ ディマイトは反応性が高く急速膨張性の鉱物、微晶質~ 隠微晶質石英は遅延膨張性の鉱物とされており、ガラス はその中間である⁸。今回、3 試料ともにほぼ同様の骨 材が使用されており、細骨材の火山岩類に急速膨張性の 反応性鉱物を、粗骨材の変斑れい岩に遅延膨張性の反応 性鉱物を含んでいた。変斑れい岩は、本来 ASR 反応性を 有するものは少ないが、今回の試料中には岩石の二次的 な変質作用により生成した微晶質~隠微晶質石英を含む。 4.2 アルカリの由来

水溶性アルカリ量の分析結果から、コンクリートのア ルカリ総量は3試料とも総量規制の3.0kg/m³にほぼ達し ている。そこで、アルカリ総量に対し、セメント由来の アルカリがどのくらい寄与しているか、「3.5」で分析し たコンクリート中に残存する未水和セメント粒子(エー ライト・ビーライト・アルミネート・フェライト)の EDS 定量分析値から最小アルカリ量を求め、クリンカーの最 小アルカリ量^{1),5)}を推定した結果を**表**-3に示す。これは クリンカー中の水溶性アルカリ(主に硫酸アルカリに由 来)を除外した数値である。なお、本試料に使用された セメントは早強ポルトランドセメントとして計算を行っ た⁹⁾。

EDS 定重分析結果(IIIass》)							
試料		Na ₂ O	K ₂ O	Na ₂ O*	K_2O^*		
	エーラ	0.10	0.04	0.13	0.03		
	イト	0.28	0.06				
	ビーラ	0.43	0.19	0.07	0.04		
	イト	0.53	0.34				
橋梁1	アルミ	2.25	0.66	0.19	0.05		
右岸	ネート	2.04	0.42				
	フェラ	0.27	0.01	0.02	0.00		
	イト	0.13	0.06				
				0.41	0.12		
	最小ア	・ルカリ量	0.49				
	エーラ	0.20	0.03	0.16	0.02		
	イト	0.27	0.03				
	ビーラ	0.33	0.39	0.05	0.05		
歩 河)	イト	0.37	0.32				
橋架 2 左岸	アルミ	2.73	0.81	0.21	0.05		
	ネート	2.04	0.31				
	フェラ	0.22	0.11	0.02	0.01		
	イト	0.33	0.09				
				0.45	0.13		
	最小アルカリ量(%)			0.53			
* 早強ポルトランドセメントとしてエーライト							

表-3 未水和セメントのアルカリ量の

* 早強ホルトワントセスントとしてエーワイト 69%, ビーライト 14%, アルミネート 9%, フェラ イト 8%の含有比率を掛けたアルカリ量⁹。 最小アルカリ量=Na₂O*+0.658×K₂O*

使用セメント中のクリンカー部分の最小アルカリ量 (Na2Oeq.)は、橋梁1右岸で0.49%、橋梁2左岸で0.53% と推定された。使用されたセメントのクリンカー中の水 溶性の硫酸アルカリを,表-3 で推定した最小アルカリに 補正(2割増し)を行うと⁵⁾、セメント中の全アルカリ量 (Na2Oeq.)は、橋梁1右岸で0.59%、橋梁2左岸で0.64% 程度と推定される。本 PC 桁は設計基準強度が50N/mm² で作製されていることから、単位セメント量は圧縮強度 50N/mm²程度の一般的な PC 製品の範囲にある450kg/m³ と仮定した¹⁰⁰。コンクリート中のセメント由来のアルカ リ量は橋梁1右岸が2.66 kg/m³、橋梁2左岸が2.88kg/m³ となる。

総プロ法の結果と EDS によるコンクリート中のセメ ント由来のアルカリ量を比較すると、コンクリートの水 溶性アルカリの大半はセメント由来であると推察される。 コンクリートのアルカリ総量に対し、セメント由来のア ルカリだけでは 0.3kg/m³ 程度アルカリが不足する分は、 粗骨材や細骨材に含まれる長石などからの溶出アルカリ, 海水によるアルカリの供給,硫酸アルカリなどの仮定の 誤差が寄与した可能性が考えられる。

4.3 ASR の進行状況

一般に、ASR ゲルは組成がアルカリに富むもの(図-3 の左側に位置する) ほど膨張性があるが, 反応の進行 に伴い、ゲル内のアルカリがセメントペーストのカルシ ウムと交換して、CSH ゲルの組成に近づいていく。ASR ゲルの膨張性は、カルシウムに富むにつれて低下し、「収 斂点」に達し CSH ゲルの組成に至ると消失する ^{1),2)}。図 -3で、橋梁1の右岸、左岸とも、アルカリに富む左端 からASR ゲルの組成線が延びているが、収斂点には達し ていない。橋梁2左岸の組成線もアルカリに富む左端か ら延びているが,橋梁1左岸,橋梁1右岸の2試料よりも 組成線は収斂点までの隔たりがやや大きい。偏光顕微鏡 による組織観察の結果でも,橋梁1は右岸,左岸とも ASR の進行段階は加速期で,劣化の程度は中程度~顕著, 橋梁2左岸は、ASR の進行段階は進展期~加速期で、劣 化の程度は中程度と評価されることから、ゲルの EDS 分 析の結果と調和する。

4.4 膨張試験結果との相関

3 試料とも骨材およびセメントは同一のものが使用さ れていると見られ, 偏光顕微鏡観察による反応の程度の 差は, 主に使用された環境の水がかりや日照の違いなど の影響によるものと考えられる。膨張試験結果は, 最も ASR が進行していた橋梁1右岸で膨張量が少なく, 最も 反応の程度が低い橋梁2左岸では, 膨張量が大きいこと から, この膨張量はさらにアルカリが供給された場合の 反応余力を示していると考えられる。

5. まとめ

- (1) 高強度 PC 桁には,粗骨材に変斑れい岩の砕石が使 用され,細骨材には火山岩類(安山岩・安山岩質溶 結凝灰岩など)と花崗岩起源の岩片・鉱物片からな る砂が使用されていた。
- (2) ASR は粗骨材の変斑れい岩と細骨材の安山岩にセ メントペーストに進展したひび割れが頻繁に認め られた。
- (3) ASR は橋梁1右岸,橋梁1左岸ともASR は中程度 ~顕著で加速期に相当,橋梁2左岸は中程度で進展 期~加速期に相当するものであった。
- (4) コンクリートのアルカリ総量は 3.0~3.2kg/m³ であ り、十分に ASR を生じるアルカリが含まれていた。 この中でセメントに由来するアルカリ総量の推定 値が 2.7~2.9kg/m³ で、その殆どを占めていた。残 りの 0.3 kg/m³程度は、骨材の長石などからのアル

カリの溶出,海水によるアルカリの供給,硫酸アル カリなどの仮定の誤差が影響していると考えられ る。

(5) ASR による劣化の原因は,細骨材の火山岩類に含 まれる反応性の高いクリストバライト・トリディマ イト・ガラスが主要なものであるが,粗骨材の変斑 れい岩に含まれる微晶質~隠微晶質石英も反応に 寄与していた。

参考文献

- Katayama, T., et al.: Late-Expansive ASR due to Imported Sand and Local Aggregates in Okinawa Island, Southwestern Japan. Proceedings, 13th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), Trondheim, Norway, pp.862-873, 2008
- Katayama, T.: Late-expansive ASR in a 30-year old PC structure in Eastern Japan. Proceedings, 14th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), Austin, Texas, USA. p.10, paper 030411-KATA-05, 2012
- 3) 公益社団法人 日本コンクリート工学会:コンクリ ート診断技術 14,2014
- 公益社団法人 日本コンクリート工学会:コンクリ ートのひび割れ調査,補修・補強指針-2013, p.95, 2013
- Katayama, T., et al.: Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan. Materials Characterization, Vol.53, nos.2-4, pp.105-122, 2004
- 6) 建設省総合技術開発プロジェクト:コンクリートの 耐久性向上技術の開発報告書<第2編>3.3 コンク リート中の水溶性アルカリ金属の元素方法(案), 1988
- 7) 土木学会編:2012 年制定コンクリート標準示方書 [施工編 耐久性照査型],2012
- 片山哲哉:アルカリシリカ反応入門 アルカリシリ カ反応の診断方法,コンクリート工学, Vol.52, No.12, 2014
- 9) セメント協会:セメント化学雑論,セメントの諸比率・係数の工学的意味,pp.34-38,1985
- 10) 独立行政法人土木研究所技術推進本部構造物マネ ジメント技術チーム,(社)プレストレス・コンクリ ート建設業界協会:PC部材の軽量・高耐久性化に関 する共同研究報告書-テストハンマーによる PC 部 材のコンクリート強度推定に関する検討-,共同研 究報告書,2003