論文 仕上材を有するコンクリートの透気性評価に関する実験的検討

加藤 猛*1·今本 啓一*2·清原 千鶴*3·山﨑 順二*4

要旨:仕上付きコンクリートにおけるかぶりコンクリートまでの透気性評価の検討を行うために,複数の表 層透気試験機を用いた。その結果,RILEM法は仕上材を含むコンクリートの透気性を評価していたのに対し, ダブルチャンバー法およびシングルチャンバー法については,主に仕上材の品質を評価していることが明ら かとなった。そこで,仕上材付きコンクリートの透気性を評価するためにドリル削孔法を用い,仕上付きコ ンクリートの透気性評価のためダブルチャンバー法およびシングルチャンバー法と「ドリル削孔法」を組み 合わせることを提案した。

キーワード:かぶりコンクリート,表層透気試験,仕上材,中性化,透気性,透気領域

1. はじめに

鉄筋コンクリート建築物の耐久性評価の判断材料の1 つとして中性化がある¹⁾。中性化は、かぶりコンクリー トを通して進行するため、原位置における品質評価が重 要であり、その1つとして、表層透気試験がある。田中 らによってコンクリート面において透気係数と中性化速 度係数の間には高い相関があると示されている²⁾。しか し、既存する鉄筋コンクリート建築物のほとんどは仕上 材が施されているため必ずしも十分ではない。仕上材は 中性化抑制効果があり³⁾、種類は多岐にわたるが仕上材 の種類によって中性化抑制効果は異なり、また同一の種 類であっても施工方法、環境条件、劣化状態等によって も異なると考えられる。仕上材を有するコンクリートの 透気係数においても同様である。仕上材による中性化抑 制効果と透気係数の関係は不明瞭なことが多く、かぶり コンクリートまでの評価がされているとは限らない。

そこで本研究は、仕上付きコンクリートに対して各種 表層透気試験を行い、透気試験時におけるコンクリート と仕上材内部の圧力を測定することによって透気領域の 推定をした。さらに透気係数と中性化速度係数および中 性化抵抗の関係より、仕上材を含めたコンクリートの透 気性評価の検討を実験室レベルで行ったものである。

2. 表層透気試験

これまで様々な表層透気試験の開発・研究が行われて きた。各種表層透気試験機にはそれぞれの特徴があり, 使用する状況に応じて,使い分けをする必要がある。こ こでは仕上付きコンクリートの透気性評価を各種表層透 気試験の結果より複合して評価することを試みる。

2.1 RILEM 法

透気性評価において, RILEM 法(図-1)は海外でベン チマーク試験として位置づけられる。試験体はφ150mm, 50mm のコンクリート試験体を用いてコンクリートをセ ルに格納し,周辺を気密にした状態で圧力(圧力設定を 3 パターン)を印加し,圧力が安定後に測定シリンダー が満たすまでの時間を測定する。圧力に応じた透気量か ら式(1)表示されるハーゲン・ポアズイユ則における透気 係数を求める。

$$K = \frac{2 \cdot Q \cdot Pa \cdot L \cdot \eta}{A(P^2 - Pa^2)} \tag{1}$$

ここに,

Κ	:	透気係数	$[m^2]$
Q	:	透気量	[m ³ /sec]
Р	:	印加圧力	[N/m ³]
Pa	:	大気圧	$[N/m^2]$
А	:	試験体断面積	$[m^2]$
L	:	試験体厚さ	[m]
η	:	気体の粘性	$[Ns/m^2]$

2.2 シングルチャンバー法

シングルチャンバー法(以下, SCM 法) はチャンバー 内を減圧したのち特定の気圧になるまでの時間を測定し、 コンクリートの透気速度を式(2)により求める(図-2)。 SCM 法は試験時間が短く, 簡便に測定できるが, 床に対 してはブリーディングによる影響によって, 壁に対して は早期に脱型などによって形成される表層の粗な部分 (Skin)に影響をうける⁴⁾。表面状態に測定結果が左右され ることから, 本研究では逆に仕上材の評価が可能な方法 と考えた。

*1 東京理科大学 工学研究科建築学専攻 (学生会員)
*2 東京理科大学 工学部建築学科 教授 博士 (工学) (正会員)
*3 東京理科大学 工学部建築学科 嘱託補手 博士 (工学) (正会員)
*4(株)淺沼組技術研究所 修士 (工学) (正会員)

透気速度 =
$$\frac{25.3 - 21.3(kPa)}{E \int f f k c s = 0}$$
 (2)

2.3 ダブルチャンバー法

ダブルチャンバー法(以下, DC 法)は, 透気性測定部の 内部チャンバーと圧力調整用の外部チャンバーの独立 2 重構造から成り立っている(図-3)。外部と内部の圧力を 等しく制御することで,外部から内部のチャンバーに空 気の流入を物理的に排除し,SCM 法などで懸念される Skin の影響を根本的に解決した試験方法である。内部チ ャンバー下からの栓流によるチャンバー内の経過時間と 気圧変化量からかぶりコンクリートにおける透気係数お よび透気深さを式(3),式(4)より求める。なお,内部・外 部チャンバーをコントロールすることで内部チャンバー における一次方向の透気性を評価している。このため, 測定部における空気流は RILEM 法における気体の流れ と近いものと報告されている⁵⁰。

$$K = \left(\frac{Vc}{A}\right)^{2} \cdot \frac{\mu}{2 \cdot \varepsilon \cdot Pa} \cdot \left(\frac{\ln \frac{Pa + \Delta P}{Pa - \Delta p}}{\sqrt{t_{f}} - \sqrt{t_{0}}}\right)$$
(3)
$$L = \left(\frac{2 \cdot Kt \cdot Pa \cdot t_{f}}{\varepsilon \cdot \mu}\right)^{2}$$
(4)
$$\zeta \subset \zeta \zeta,$$

K	:	透気係数	[m ²]
L	:	透気深さ	[mm]
Vc	:	内部チャンバーの体積	[m ³]
А	:	内部チャンバーの断面積	[m ²]
μ	:	空気の粘性	[Ns/m ²]
3	:	空隙率(0.15)	[-]
Ра	:	外気圧	[N/m ²]
ΔP	:	to~tf間の圧力増分	[N/m ²]
t _f	:	計測の終了時間	[s]
t _o	:	測定開始時間(60秒後)	[s]

図-1 RILEM法

3. 試験体概要

実験に用いるコンクリートの計画調合およびフレッシ ュ性状を表-1,使用材料を表-2に示す。コンクリート の圧縮強度は 26.4N/mm²であった。打込み後 3 日まで 20℃封緘養生を行った後,材齢 28 日まで恒温恒湿室(温 度 20℃,相対湿度 60%)に気中養生し,材齢 28 日の時点 で下地モルタルを施した。モルタルのフレッシュ性状を 表-3 に示す。下地モルタルは,透気係数の違いによる 影響を検討するため,水セメント比40および65%とし, 水セメント比65%においてはポリマーを3および6%添 加した。仕上材は比較的使用頻度の多い外装薄塗材 E(以 下, Ri),合成樹種 EP(以下, Pe),複層塗材 E(以下, F) の3種類とし,施工方法は統一して吹き付けとした。モ ルタルの材齢が 14 日(基材の材齢が 42 日の時点)で塗布 を行った。

表-1 計画調合およびフレッシュ性状

W/C (%)	- /-	スラ	亦有早		単	位量((g/m³)	
	s/a (%)	a) ンプ (cm)	空気量 (%)	w	С	s	G	混和 剤
65	50	19.5	5.5	172	265	903	925	2.65

表--2 使用材料

材料名	種類および物性				
セメント	普通ポルトランドセメント	(密度 3.16g/cm³)			
細骨材	大井川陸砂	(密度2.58g/cm³, 吸水率2.07%)			
粗骨材	青海産砕石	(密度2.65g/cm³, 吸水率0.50%)			
混和剤	AE 減水剤	(リグニンスルホン酸系)			

表-3 モルタルフレッシュ性状

水セメント比(%)	フロ―0 打 (mm)	フロー15 打 (mm)	空気量 (%)
40	94 × 95	108×113	4.7
65	114×112	228 × 227	0.8
65 ポリマー3%	135 × 134	236 × 234	5.6
65 ポリマー6%	163×176	249 × 244	4.5

4. 透気領域の検討

試験体一覧を表-4に示す。表-4に示す M40, M65, M65-Po3, M65-Ri, M65-F, および M65-Pe の記号に表さ れる試験体を作製した。寸法は $150 \times 150 \times 200$ mm(仕上 材塗布面 150×200 mm)で図-4に示すように測定面から 5, 10, 20, 30mm の深さ方向に内径 ϕ 1mm 外径 ϕ 2mm のステンレスパイプを打設時に埋設させた。仕上材塗布 後 14 日(基材の材齢が 56 日)まで恒温室に静置し,透気 試験(DC 法, SCM 法)を行った。ステンレスパイプの先 端に圧力センサーを取り付け,透気試験開始時から測定 終了後コンクリート内の圧力が大気圧に戻るまでの圧力 分布を測定することで透気領域の検討を行った。

圧力測定結果を図-5 に示す。なお M40, M65-F につ いては、測定時に 5mm の深さの位置で圧力変化がなか

≕☆☆	仕上材の仕様						
武殿冲	仕堆	W/C	厚さ	養生	ポリマー		
田 与	11.1%		(mm)	条件	添加量		
M40			10	気中	-		
M40−2 湿	モルタル	40%	10	2日湿布	-		
M40-7 湿			10	7 日湿布	-		
M40-20			20	気中	-		
M40-30			30	気中	-		
M65			10	気中	-		
M65-Po3	モルタル		10	気中	3%		
M65-Po6			10	気中	6%		
M65-Ri	モルタル + リシン	65%	10	気中	-		
M65-F	モルタル + 複層		10	気中	-		
M65-Pe	モルタル + ペイント		10	気中	-		

表-4 試験体一覧

	M40	M65-Po3	M65	M65-Ri	M65-Pe	M65-F
kT(× 10 ⁻¹⁶ m ²)	3735	63	165	1.1	3.8	<0.001
SCM(k Pa∕sec)	*	2.31	0.72	3.64	0.15	0.0075
L(mm)	1372	180	290	45	62	<5
推定透 気領域	5mm より 表層	30mm 以上	5~10 mm	5~10 mm	5 ~ 10 mm	5mm より 表層

表--5 透気係数と推定透気領域

ったため結果を割愛した。図-5よりいずれの試験体に おいても DC 法と SCM 法で圧力変化量は多少異なるが, 同様の圧力分布を示した。透気試験時において得られた DC 法の透気係数(kT)と透気深さ(L), SCM 法で得られた 透気速度(kPa/sec)また,図-5から推定される透気領域 を表-5に示す。仕上材付きコンクリートの透気領域に ついて,M65-Fを除き DC 法の式(4)により算出される透 気深さ(L),と圧力分布により推定される透気領域は乖離 する結果となった。仕上付きコンクリートの場合,ある 一定の透気係数の大きさ以上になると DC 法であっても Skinの影響をうけることも予想されるがこの点について は推定式の妥当性も含めて検討が必要であると考える。

M65-Po3 はコンクリート部まで透気しているが、それ 以外の試験体はモルタルまで(表層から 5mm の位置)、も しくはごく表層部までしか透気していないことが認めら れる。モルタルの水セメント比の違いや仕上材の違い等 によって透気領域は異なるが、仕上付きコンクリートは 仕上材部までが主たる評価領域と考えられる。

5. 各種表層透気試験

表-4 の全ての試験体に対して, 試験体寸法が φ 150 × 50mm(コンクリートとモルタルの厚さの和)の試験体 について DC 法, RILEM 法および SCM 法により測定を 行った。DC 法および RILEM 法については, 仕上材塗布 前(基材の材齢は 28 日)および仕上材塗布後(基材の材齢 は 56 日)に透気試験を行った。SCM 法についても仕上材 塗布時に透気試験を行った。

5.1 実験結果

(1) 各種透気試験結果

各透気試験結果を図-6 に示す。コンクリートのみの 透気試験結果は、全ての部材において、DC 法と RILEM 法による透気係数はほぼ同程度の値を示した。

仕上材塗布後の透気試験結果は RILEM 法において仕 上材の種類によらず,どの試験体でもほぼ同程度の透気 係数となり,またコンクリートのみの結果と比較しても 透気係数に大きな変化はみられなかった。RILEM 法は, 式(1)に示されるように透気係数を決定する要因の1つに 試験体の厚さがある。仕上材の厚さに比べ,コンクリー トの厚さが占める割合が大きく仕上材が塗布されていて も主にコンクリート部の透気性を評価したためと考えら れる。それに対して DC 法は仕上材の種類により透気係 数が異なる。SCM 法についても同様であり,仕上材の影 響を大きく受けていることを示唆する結果となった。な お,SCM 法の M65 については測定時に減圧しきらなか ったため測定不可とし,図から割愛している。

(2) 各種透気試験との関係

仕上材塗布後の各種透気試験結果の関係を図-7 に示 す。DC 法と SCM 法では両者の間には寄与率 0.71 の高 い相関関係があった。仕上付きコンクリートの透気性を 評価する際, DC 法においても SCM 法と同様に仕上材の 影響を受けているが,その傾向は両者の方法において概 ね同程度であると考えられる。

RILEM 法と DC 法および SCM 法の関係は相関関係が 皆無であった。これは前述したように RILEM 法が主に コンクリート部を, DC 法および SCM 法が主に仕上材部 の透気性の影響を受けているためと考える。

6. 促進中性化試験

各種表層透気試験で使用した試験体および試験体寸法 100×100×200mm で同一種類の仕上材を施した試験体 (打放し含む)を JIS A 1153 コンクリートの促進中性化試 験方法に則り,中性化試験を行った。

6.1 実験結果

(1) 各種透気試験結果と中性化速度係数

各種透気試験結果と中性化速度係数との関係を図-8 に示す。各測定結果で中性化速度係数が高い点が1箇所 あるが、これは打放し部の測定結果のためである。DC 法と SCM 法については透気係数が大きくなるにつれて 中性化速度係数が高くなる傾向は示すが、透気係数と中 性化速度係数との相関は必ずしも高くない。DC 法、SCM 法は仕上材部の透気性を評価しており、また促進中性化 試験も仕上材の影響を受けるため、この点において定性 的に両者は対応するものの、表層透気試験で評価する仕 上材付きコンクリートの中性化深さを必ずしも精度よく 反映していないための結果と考える。RILEM 法は透気係 数が大きくなるにつれて中性化速度係数が大きくなる傾

向がみられなかったが、これは促進中性化試験そのもの が仕上材の影響を大きく受けたためと考える。すなわち、 仕上材付きコンクリートの中性化を評価するためにはコ ンクリート部および仕上材部それぞれの透気性を適切に 評価する必要があるものと考える。

(2) 各種透気試験結果と中性化抵抗

中性化抵抗は馬場ら⁶⁾が提案した仕上材を施したコン クリートの中性化深さの式(5)から逆算したものを使用 した。

$$X = A\sqrt{t + R^2} - R \tag{5}$$

ここに,

Х	:	中性化深さ	[mm]
А	:	仕上材のないコンクリート	[mana/a/waam]
		の中性化速度係数	[mm/vyear]
t	:	促進中性化期間	[week]
R	:	中性化抵抗	[√week]

各種透気試験結果と中性化抵抗の関係を図-9 に示す。 DC法およびSCM法は透気係数が小さくなるほど中性化 抵抗が大きくなる傾向がみられた。両者の相関係数は中 性化速度係数の時と比べて向上した。仕上材の厚さの要 因を同一にすると(M40-20, M40-30を除く)DC法で寄与 率 0.77, SCM法で 0.72 と高くなった。DC法, SCM法 の測定結果は,仕上付きコンクリートの中性化深さを予 測するための手段として用いられるより,むしろ,仕上 材による中性化抑制効果の程度を示していると考える。 さらに仕上材の厚さが同一であれば精度よく示すことか ら、今後は仕上材の透気係数だけでなく仕上材の厚さを 考慮した評価が必要であると考えられる。

7 「表面法」と「ドリル削孔法」を組み合わせた評価の 提案

これまでの実験結果より、仕上付きコンクリートにお いて DC 法や SCM 法のような「表面法」では、仕上材 の品質を評価するものの、これのみでかぶりコンクリー トの透気性を精度よく評価するには至らない。一方 RILEM 法はコンクリート部の透気性を評価することが できるものの、実際の測定にあたってはコア抜きなどの 大きな破壊作業が生じる。そこで、かぶりコンクリート のコンクリート部の透気性を評価するために、「削孔法」 の位置づけにあるドリル削孔法を行い、「表面法」のDC 法および SCM 法と「ドリル削孔法」の両者を組み合わ せた評価の可能性を検討する。図-10に評価方法の概念 を示す。図に示すように「表面法」で仕上材の評価をし、 「ドリル削孔法」でコンクリート部を評価することで総 合的な仕上付きコンクリートの透気性評価が可能である と考える。そのため、「ドリル削孔法」がコンクリートの 評価が可能かを検討した。

図-10 評価方法の概念

透気領域の検討で使用した試験体を用いて行った。仕 上材あり,なしでのコンクリートの透気性の比較ができ るように,仕上塗布面と逆面の打放し面(以下, CON と 表記)でも測定を行った。

7.1 ドリル削孔法

ドリル削孔法(以下: FIM 法)を図-11 に示す。FIM 法 は,試験位置に設けたドリル孔(直径 10mm×深さ 50mm)を シリコン栓にて密封し,孔内を減圧後,孔内部の圧力が所定 の圧力に戻るまでに要する時間より簡易透気速度(kPa/sec) を求めるものことでかぶりコンクリートまでの透気性を評価す る。削孔することで,仕上材による影響を大きく受けることなく 削孔内のコンクリート部における透気性の評価ができると示 唆されている⁷⁾。算出式については式(2)と同様である。

図-11 FIM 法

7.2 実験結果

FIM 法による測定結果を図-12 に示す。M-40, M65-F についてはドリルで削孔時モルタル部にひび割れが発生 しており,測定時に空気漏れが確認されたため除外した。 結果より打放し面と仕上面で透気速度の差は,前述の DC 法および SCM 法と比較して相対的に小さかった。図 -6より DC 法や SCM 法は仕上材の影響を受け DC 法は, 0.001~1000(×10⁻¹⁶m²), SCM 法は 0.001~10(kPa/sec)の範 囲で分布していることを考慮すれば,FIM 法は 0.1~10(kPa/sec)の範囲で分布しているため相対的に仕上 材による影響は少なく,コンクリート部の透気性を評価 できているものと考える。今後は「表面法」と「ドリル 削孔法」組み合わせた方法による中性化評価式の検討を 行う予定である。

8. まとめ

仕上付きコンクリートの透気性に関して本実験により 得られた知見を以下に示す。

- DC 法と SCM 法の透気領域は同様であり、仕上材 やモルタルの性状ごとに違うが、仕上部の領域を 評価していると考えられる。
- 2) 仕上付きコンクリートに各種透気試験を行った時 DC 法と SCM 法に高い相関がみられた。
- 3) 中性化評価する際, DC 法や SCM 法から得られる 透気試験結果は中性化の予測するための値という

よりも仕上材の中性化抑制効果の程度を示している。

 FIM 法は仕上材による影響は DC 法および SCM 法 と比べると相対的に小さかった。

謝辞

本論文に関して仕上材のご提供してくださったエスケ ー化研小寺努様,試験体作製や論文作成にご協力いただ きました八洋コンサルタント田中章夫様にはここに記し て感謝の意を表します。

参考文献

- 日本建築学科:鉄筋コンクリート造構造物の耐久 設計施工指針(案)・同解説,2004
- 田中章夫,今本啓一:表層透気性による既存 RC 構造物の中性化予測に関する研究,日本建築学会 構造系論文集, Vol.78, No.691, pp.1539-1544, 2013.9
- 3) 建設大臣官房技術調査室監修,(財)国土開発技術センター建築物耐久性向上普及委員会:鉄筋コンクリート造建築物の耐久性向上技術,技報堂出版, 1986.6
- Torrent, R.,and Ebensperger, L., Studie über Methoden zur Messung und Beurteilung der Kennwerte des Überdeckungsbetons anf der Baustelle – Teil 1, p119, Office Féderal des Routes, Suisse, Zürich, Januar 1993.
- Schönli, K. and Hilsdorf, H.: Evaluation of the effectiveness of curing of concrete structure, ACI SP-100, Concrete Durability. Katharine and Bryant Mather Intern. Confer., Vol.1, pp.207-226, Detroit, ACI, 1987
- 6) 馬場明生ほか:各種表面層をもつコンクリートの 中性化深さ推定式に関する一考察,コンクリート 工学年次論文報告集, Vol.9, No.1, pp.333-338, 1987
- 7) 下澤和幸ほか:塗仕上げを施した鉄筋コンクリート造建築物のかぶりコンクリートの性能評価方法 に関する検討,コンクリート工学年次論文報告集, Vol.35, No.1, pp.2019-2024, 2016