論文 コンクリート中における電気浸透流に関する基礎的研究

大塚 邦朗*1・岩波 光保*2・千々和 伸浩*3

要旨:コンクリートは補修や試験など様々な場面で電圧を印加されることがあり、その際に電気浸透流が起こる可能性は十分にある。電気浸透流とは、毛細管内が電解液で満たされているときに電圧が印加されると毛細管内で流れが生まれる現象である。しかし、コンクリート中における電気浸透流についての研究は多くはない。本研究はコンクリートにおいて起こる電気浸透流の影響を実験的に検討した。それにより、コンクリート中の電気浸透流は低電圧(15,30V)ではほとんど起こらないこと、高電圧(60,80V)では起こることがわかった。また W/C は、電気浸透流量に影響することがわかった。

キーワード:コンクリート,電気浸透流,W/C,骨材,遷移帯領域,塩化物イオンの実効拡散係数試験

1. はじめに

コンクリートにはエントラップトエアやエントレイン ドエア,毛細管空隙やゲル空隙などの空隙が存在し,そ れらはコンクリートの強度や耐久性などの様々な特性に 深く関わっている。今回着目する毛細管空隙はコンクリ ートの耐久性に影響する。コンクリートの重大な劣化は 毛細管空隙内を劣化因子が移動することで起こると考え られる。

毛細管内を物質が移動する現象として電気浸透流¹⁾が ある。毛細管内が液体で満たされているときに外部から 電圧が印加されると,内部の液体が電極に向かって動く 現象である。この現象はマイクロ流体機械や化学分析な どの他分野では広く用いられているものである。

コンクリートには材料試験や補修などの様々な場面で 電圧が印加される。例えば、土木学会規準に規定される 電気泳動試験(JSCE-G571)や ASTM C1202 に規定される 電気化学的手法などではコンクリートの塩化物イオンの 拡散係数を測ることができる。脱塩工法では腐食の原因 となるコンクリート内部の塩分を外部へ除去できる。再 アルカリ化工法では中性化したコンクリートを再度アル カリ化させ、鉄筋腐食抵抗性を向上させることができる。

コンクリートは毛細管空隙を有すること,電圧が印加 されることがあるため,コンクリートにおいて電気浸透 流が起こる可能性は十分にある。既往の研究では,セメ ントペーストやモルタルにおける電気泳動試験において, 電気浸透流が起こることが示唆されている²⁾が,コンク リート中における電気浸透流の発生に関する研究は多く ない。コンクリート中において発生する電気浸透流は先 に述べたような材料試験や補修に影響を与える可能性が あり,コンクリート中における電気浸透流についての知 見を得ることは実用上実務上必要なことであると考えら れる。さらに,得られた知見から電気浸透流を用いた新 たな材料試験や補修の方法を開発できる可能性がある。

本研究の目的は,コンクリート中で起こる電気浸透流 の測定方法を考案し,それを用いてコンクリート中の電 気浸透流の特性について実験的に検討することである。

2. コンクリート中の電気浸透流の測定方法の考案

既往の研究²では、土木学会規準に示されている電気 泳動試験においてモルタルやセメントペースト中で電気 浸透流が起こることがわかっている。本実験においては、 コンクリート中で電気浸透流が起こるかどうかを確かめ るため、JSCE-G571と同一にしてコンクリートに電圧を 印加することとした。図-1に示すようにアクリルセル にコンクリート試験体を設置し、陽極側と陰極側セルと もに NaOH 溶液で満たす。ここで電圧を印加すると、電 気浸透流と電気分解が起こる。電気浸透流によって液体 は陽極側セルから陰極側セルに流れるため、陽極側セル では溶液の体積が減少し、陰極側セルでは溶液の体積が 増加する。各極での電気分解は式(1)と式(2)に示すような 反応が起こり、両極とも体積が増加する(図-1)。

陽極: $4OH^- \rightarrow 2H_2O + 4e^- + O_2$	(1)
陰極: 2H ⁺ + 2e ⁻ → H ₂	(2)

以上から,各セルにおける体積変化は式(3)と式(4)で示 すようになり,各セルでの体積変化を測定するとともに,

*1 東京工業大学大学院 理工学研究科 土木工学専攻 (学生会員) *2 東京工業大学 環境・社会理工学院 土木・環境工学系 教授 博士(工学) (正会員) *3 東京工業大学 環境・社会理工学院 土木・環境工学系 准教授 博士(工学) (正会員) 電気分解量を理論的に算出することで、電気浸透流の量 が求められる。

陽極: 体積変化量 = 電気分解量 + 電気浸透流量 (3)
 陰極: 体積変化量 = 電気分解量 + 電気浸透流量 (4)

体積変化量はシリンダーを用いて水頭の変化を測るこ とで1秒間あたりの体積変化量[mm³]を求めるため、単 位は[mm³/s]となる。また、電気分解量の算出にはファラ デーの電気分解の第二法則を用いる(式(5))。

$$n = \frac{It}{zF} \tag{5}$$

ここで,	n[mol]: 物質量	t[s]: 時間
	I[A]: 電流	z: イオン価数
	F[C/mol]: ファラデ	-定数=9.65×104

電気分解量についても1秒間あたりの変化量を求める ため、単位は[mm³/s]となる。ここで電気分解によって消 費・生成される水分子についてはその体積が発生する気 体とくらべて非常に小さいため、無視する。水の電気分 解の化学反応式を式(6)に示す。水1molの体積は0.018L, 水素と酸素はどちらも気体であるため1molの体積は

22.4L であり,水 0.018L を分解すると水素が 22.4L,酸素が 11.2L 生成される。

 $2H_2O \rightarrow 2H_2 + O_2 \tag{6}$

本実験で求まる電気浸透流量の単位は[mm³/s]とし,以下の式(7)と式(8)で算出する。得られた陰極側と陽極側セルの電気浸透流量の絶対値はその仮定から等しくなる。

陽極: 電気浸透流量 = 電気分解量 - 体積変化量 (7)陰極: 電気浸透流量 = 電気分解量 - 体積変化量 (8)

3. コンクリート中の電気浸透流の特性に関する検討 3.1 実験パラメーター

電気浸透流に影響を与えるパラメーターとして、コン クリートの空隙構造や内部性状、表面性状が影響すると 考え、コンクリートのW/Cや印加電圧、材齢、表面性状、 骨材の影響の5種類を検討した。W/Cは60,45,30(%) の3水準について検討した。各W/Cの配合については表 -1に示したものとし、試験開始時の材齢は1週間のも のを用いた。印加電圧は15,30,60,80(V)の4水準と し、各W/Cについて検討した。材齢は試験開始時の材齢 について1週間と4ヶ月の2水準とし、各W/Cについて 検討した。表面性状はW/C=45%について切断面と型枠 面の2水準を検討した。骨材の影響は粗骨材の有無を検 討し、W/C=45%についてコンクリートとモルタルの2水 準を検討した。コンクリートが電圧を印加される状況は 主に長時間印加であるため、測定時以外にも電圧30Vを 印加し続け、電気浸透流の測定を1日おきに行った。

試験体は,室温20℃,相対湿度60%の環境で打設した後,1日後に脱型し,所定の材齢まで水中養生した。

表-1 コンクリートの配合

W/C	s/a	Unit(kg/m ³)			
(%)	(%)	W	С	S	G
30	45	165	550	725	914
45	45	165	367	794	1000
60	45	165	275	828	1043

※C:普通ポルトランドセメント (比重 3.16) S:陸砂(表乾 比重 2.60, 吸水率 1.48%), G:砕石(表乾比重 2.68, 吸水率 0.61%, G_{max}=20mm)

表-2 検討したパラメーターのまとめ

パラメーター	試験体			
W/C	30%	45%	60%	
印加電圧	15, 30, 60, 80 (V)			
材齢	1週間,4ヶ月			
表面性状	切断	切断-型枠, 切断-切断	切断	
骨材の有無	有り	有り, 無し	有り	

3.2 W/C と印加電圧が電気浸透流量に及ぼす影響

W/C=60, 45, 30%について, 電圧 15, 30, 60, 80(V) における各セルでの電気浸透流量(ΔEOF)と時間の関係 をそれぞれ図-2~4に示す。凡例は W/C(30/45/60%)_電 圧(15/30/60/80V)_セル(Anode/Cathode)を意味する。

図-2からW/C=60%について印加電E 15, 30, 60, 80(V)による影響を考察する。電E 15, 30(V)について陰 極と陽極のセルで起こった電気浸透流量はほとんど0で あった。以上から,電E 15, 30(V)では電気浸透流がほ とんど起こらなかったと考えられる。次に電E 60, 80(V) について両極のセルで起こった電気浸透流量は陰極側で は正に,陽極側では負になる傾向がみられ,両極のセル における電気浸透流量の値は等しくなった。以上から, 電E 60, 80(V)では電気浸透流が起こったと考えられる。 電E 60, 80(V)での電気浸透流量について比べると,電 E 60V では陰極側と陽極側セルでの電気浸透流量が約 1mm³/s に対して,電E 80V では陰極側と陽極側セルで は約 2mm³/s であった。以上から,コンクリート中で起 こる電気浸透流量は電圧に影響されることがわかった。

図-3からW/C=45%について印加電E 15, 30, 60, 80(V)による影響を考察する。W/C=45%においては W/C=60%と同様に電圧 15, 30(V)では電気浸透流量がほ とんど0であり、電圧 60, 80(V)では電気浸透流量が除 極側では正に、陽極側では負になる傾向が見られ、陰極 と陽極のセルにおける電気浸透流量の値はほぼ等しくな った。電圧 60, 80(V)での電気浸透流量について比べる と、電圧 60Vでは陰極側と陽極側セルでの電気浸透流量 が約 1mm³/s に対して、電圧 80V では陰極側と陽極側セ

図-4 電圧 15, 30, 60, 80(V)における W/C=30%の各セルでの電気浸透流量と時間の関係

ルでの電気浸透流量が約2mm³/sであった。

図-4 から W/C=30%について印加電圧 15, 30, 60, 80(V)による影響を考察する。W/C=30%でも、同様に電 圧 15, 30(V)では電気浸透流量がほとんど 0 であり、電 圧 60, 80(V)では電気浸透流量が陰極側では正に、陽極 側では負になる傾向が見られ、陰極と陽極のセルにおけ る電気浸透流量の値はほぼ等しくなった。電圧 60, 80(V) のそれぞれの電気浸透流量について比べると、電圧 60V では陰極側と陽極側セルでの電気浸透流量が約 0.25mm³/s に対して、電圧 80V では陰極側と陽極側セル での電気浸透流量が約 0.5mm³/s であった。

W/C=60,45,30(%)における電気浸透流量を比べると, W/C=60,45%ではほぼ等しくなり,W/C=30%では小さ くなった。このことから,あるW/Cを境に電気浸透流量 の大小が決まると考えられる。W/Cはコンクリートの内 部構造に影響を与えることが報告されている³⁾。内部構 造によって物質移動抵抗性などが決まるため,電気浸透 流も同様に影響されたと考えられる。

3.3 材齢が電気浸透流量に及ぼす影響

電圧 80V, W/C=60, 45, 30(%)について,材齢が異なる 場合の各セルでの ΔEOF と時間の関係をそれぞれ図-5 に示す。図中における凡例はW/C(30/45/60%)_電圧(80V)_ セル(Anode/Cathode)を意味する。

材齢1週間の試験体では W/C=60, 45(%)において電気 浸透流量が2 mm³/s となった。材齢4ヶ月の試験体では どのW/Cにおいても電気浸透流量が0.5 mm³/sとなった。 以上から,水和反応の進行によって細孔構造が緻密化し たことから電気浸透流量が減少したと考えられる。

3.4 切断面と型枠面が電気浸透流量に及ぼす影響

電圧 80V, W/C=45%について,表面性状が異なる場合 の各セルでの ΔEOF と時間の関係をそれぞれ図-6 に示 す。図中における凡例は表面性状(Cut/Cast)_W/C(45%)_ 電圧(80V)_セル(Anode/Cathode)を意味する。

型枠面-切断面の試験体は JSCE-G571 を参考に φ 10×20cmの円柱底面から 5cm を切断して作製した。型枠 面を陽極側セルに、切断面を陰極側セルに設置した。図 -6 から、型枠面(陽極)の電気浸透流量は切断面(陰極)と 比べて小さいことがわかる。両面が切断面における結果 の図-3と比べても、図-6の型枠面(陽極)でのみ電気 浸透流量が小さくなった。以上から、コンクリート中に おける電気浸透流は表面性状に影響されることがわかる。

既往の研究では、切断面と型枠面の細孔構造に大きな 差がないこと 4)や型枠面と切断面についての塩化物イオ ン浸透性状について有意な差がないこと 5)が報告されて いる。しかし、本実験の結果はこれらの報告とは異なる 結果である。このことは電気浸透流には細孔構造や物質 移動抵抗性以外の要因も関わってくることを示唆してい る。切断面では骨材が露出し溶液に接していたことから、 骨材の有無が電気浸透流量に影響したと考えられる。次 項のモルタルとの結果とあわせて後で考察する。

3.5 骨材が電気浸透流量に及ぼす影響

電圧 80V, W/C=45%について, モルタルとコンクリー トよる各セルでのΔEOF と時間の関係をそれぞれ図-7 に示す。図中における凡例はW/C(45%)_電圧(80V)_セル (Anode/Cathode)を意味する。

モルタル試験体について、図-7 において電気浸透流 が起こった際にみられる陰極と陽極のセルでの電気浸透 流量が正負にわかれる傾向が見られず、モルタル試験体 における電気浸透流量はほぼ0に等しい値となった。

モルタルとコンクリートは粗骨材の有無が大きな違い となる。以上から、コンクリートとモルタルにおける電 気浸透流量がそれぞれ異なる値となった理由として、粗 骨材の有無が考えられる。粗骨材を有するコンクリート の方において電気浸透流量が大きくなったことから、電 気浸透流には粗骨材が重要な要素になると考えられる。

3.6 コンクリート中の電気浸透流と遷移帯領域について

型枠面と切断面を比べた結果とコンクリートとモルタ ルを比べた結果から、ごく表層の粗骨材の有無がコンク リート中における電気浸透流量に特に影響を与えること がわかった。粗骨材の存在がコンクリートに与える影響 として遷移帯領域が考えられる。遷移帯領域とは骨材と セメントペースト界面部分に存在する直径 50nm 以上の 粗大な空隙が多く存在する領域である。遷移帯領域の存 在はコンクリートの物質移動抵抗性への影響があると考 えられている ^の。実験から得られた結果について、以下 に示した遷移帯領域の特徴^のに着目して考察する。

- (1) 遷移帯は材齢3日以降から発現し、材齢7日において その厚さが最大となり、それ以降は次第に減少する。
- 2) 遷移帯は W/C=40%前後を境に,低 W/C では形成され にくく,高 W/C では形成されやすい。
 1)について,材齢による電気浸透流量の差を再度検討

する。本実験では材齢1週間と4ヶ月の試験体について 電気浸透流量の測定を行った。各材齢におけるそれぞれ のW/Cについて電気浸透流量に差が見られ,材齢1週間 の試験体の電気浸透流量は概ね材齢4ヶ月の試験体の電 気浸透流量よりも大きくなった。材齢1週間の試験体に おいては遷移帯領域が最も大きくなり,電気浸透流量が 大きくなったと考えられる。

2)について、W/Cによる電気浸透流量の差を再度検討 する。実験から得られた結果を見ると、W/C=30%におい ては電気浸透流量が小さく、W/C=45、60(%)においては 電気浸透流量が大きくなった。これは W/C=30%では遷 移帯領域がほとんど形成されず電気浸透流が起こらなか ったが、W/C=45、60(%)においては遷移帯領域が形成さ れ電気浸透流が起こったと考えられる。以上から、遷移 帯領域において電気浸透流量が最も大きくなると考える。

遷移帯領域において電気浸透流量が増加する理由を検 討する。遷移帯領域は主に水酸化カルシウムの結晶から 構成されており,セメントペースト部と比べてイオン量 が多くなると予想される。電気浸透流量には pH が影響 すると言われており[¬],このことから遷移体領域におい て電気浸透流量が大きくなったと考えられる。遷移帯領 域は連続的な空隙構造を持つことから,コンクリートの 物質移動抵抗性に影響すると考えられ,電気浸透流も同 様に影響されると考えられる。また,骨材においても電 気二重層が形成されると報告されており[®],骨材周辺で 電気浸透流が起こる可能性は十分にある。以上から,遷 移帯領域において電気浸透流量が増加したと考えられる。

4. 電気浸透流がコンクリートに与える影響について

コンクリート中における電気浸透流が材料試験や補修 に与える影響について、本実験の結果から検討する。

材料試験について、例えばコンクリートの塩化物イオ ンの実効拡散係数試験では電圧は JSCE-G571 において 15V、ASTM C1202 やNT BUILD 492 において 60V を印 加する。電圧 15V では電気浸透流が発生しているが、そ の量は極僅かであるためその影響は無視できると考える。 しかし、電圧 60V では電気浸透流量が大きいため、その 影響は無視できないと考える。本実験の結果から W/C=45、60%では電気浸透流量が大きくなったが、 W/C=30%では小さくなった。以上から、印加する電圧が 60V の試験では W/C による電気浸透流量の差が起こり、 実効拡散係数を正しく評価できないと考えられる。

補修について,例えば脱塩工法や再アルカリ化工法で は印加する電圧が 30V であるため,電気浸透流が発生し てもその量は僅かであることから,無視できると考える。 また,補修は概ね高材齢のコンクリートに用いられるこ とから,電気浸透流の影響は小さくなると考えられる。

5. 結論

本研究の結果を以下にまとめる。

- ・コンクリート中での電気浸透流の測定方法を考案し、
 コンクリート中で電気浸透流が起こることを確認した。
- ・電圧について 15, 30, 60, 80(V)を検討した結果, 15, 30(V)では電気浸透流が起こらず, 60, 80(V)で起こった。
- ・W/C について 30, 45, 60(%)を検討した結果, 45, 60(%) で電気浸透流が起こり, 30%では起こらなかった。
- ・材齢について1週間と4ヶ月を検討した結果,1週間で 電気浸透流が起こり、4ヶ月では起こらなかった。
- ・コンクリートの表面性状について切断面と型枠面を検 討した結果、切断面で電気浸透流が起こり、型枠面で は起こらなかった。
- ・粗骨材の影響についてコンクリートとモルタルを検討した結果、コンクリートで電気浸透流が起こり、モルタルでは起こらなかった。以上から、電気浸透流は遷移帯領域に影響されることがわかった。
- ・電気浸透流がコンクリートに与える影響について検討した結果、電圧 60V で行う材料試験は電気浸透流に影響される可能性があることがわかった。また、電圧 15Vで行う材料試験や 30V で行う補修では電気浸透流が影響しないと考えられる。

参考文献

1) 玉虫伶太: 電気化学, 東京化学同人, pp.183-187, 1967.

2) 菊地道夫,金沢貴良,佐伯竜彦,齋藤豪:電気泳動法における塩化物イオン移動性状に対して電気浸透流が及ぼす影響,セメント・コンクリート論文集, Vol.68, pp.360-366, 2014

- 3)後藤孝治,魚本健人:硬化体の細孔構造に及ぼすセメントの水和反応の影響,土木学会第49回年次学術講演会概要集,第5部,pp.1022-1023,1994.
- 4)遠藤裕丈,田口史雄,嶋田久俊:透水性型枠を使用した コンクリートのスケーリング特性について、コンクリ ート工学年次論文集, Vol.25, No.1, pp.617-622, 2003.
- 5) 葛西康幸,河野広隆,渡辺博志:コンクリート供試体の 浸透面処理方法が急速塩分浸透性試験結果に及ぼす影響について,土木学会第58回年次学術講演会概要集, 第5部, pp.7-8, 2003.
- 6)内川浩:セメントペーストと骨材の界面の構造・組織 がコンクリートの品質に及ぼす影響,コンクリート工 学, Vol.33, No.9, pp.5-16, 1995.
- 7) 中村慶子,水津晋吾,田畑仁彦,井上義朗,平田雄志: 電気浸透流に及ぼすイオン吸脱着現象の影響,化学工 学会第37回秋季大会,1309,2005.
- 8)福田禮一郎:骨材の電気化学的性質-流動電位-,日本建築学会論文報告集,151巻,pp.1-6,1968.