論文 超大断面拡幅トンネルにおける SRC 覆工の適用

齋藤 隆弘*1·木下 茂樹*2

要旨:東京外かく環状道路(外環)の大泉JCTから東名JCTにかけてのトンネル区間では,高速道路等と本線を 接続するため,直径約30mの地中拡幅部が10か所計画されている。都市部での前例のない拡幅であることから, 地震時等において十分な安全性の確保が要求されている。本体構造物である覆工において,仮設部材である断 面内部の鋼材を補強部材とみなすため,鋼材が覆工の耐力に及ぼす影響を把握することを目標とした。本稿で は,開発した工法の概要,および覆工に発生する応力状態を再現するため,軸力を導入した1/4縮小モデルによる曲 げ載荷試験により,SRC覆工の適用による安全性確保について検証した結果を報告する。 キーワード:超大断面拡幅トンネル,SRC覆工,曲げ試験

1. はじめに

外環トンネル区間の地中拡幅部は,本線トンネルとラ ンプトンネルを接続する,直径約 30m の非開削による切 り拡げ工事となる。都市部,高水圧下でかつ粘性土を主 体とする地山で,このような大断面の拡幅を行った事例 はないため,十分な安全性を確保できる工法の開発が必 要であり,平成 27 年に国土交通省から技術開発業務が発 注された。この業務において筆者らは,大口径密閉型パ イプルーフを用いた地中拡幅工法の開発を行ったが,そ の覆工構造として仮設鋼材を評価した SRC 構造(以 下,SRC 覆工)とすることを計画し,その施工法および鋼 材を覆工の内部に配置することの効果についての検証を 実施した。

覆工の当初計画は厚さ 1.2m の RC 構造である。施工 時荷重を負担させるため,覆工円周方向に鋼材を 2m 間 隔で配置することを計画した。この鋼材は補強部材とし ても有効であると考えられる。一方,シールドセグメン トの曲げ試験を実施している例¹⁾²⁾は見られるが,トンネ ル構造物の覆工を対象として,軸力が作用する状況下 で,SRC としての実験的検討を行った事例は見られない。 そこで 1/4 縮小モデル(厚さ 300m,幅 500mm,有効長 2,500mm)の試験体を作成し,軸力を導入した曲げ試験 により,本構造の構造性能を検証した。

2. 工法概要

2.1 全体工法の概要

図-1に全体構造図, **図-2**, **図-3**に施工状況を示す。 施工手順は以下のようになる。

(1)本線シールドから, 拡幅部の両端に立坑を築造する (2)立坑から円周状トンネルを泥水式推進工法により築 造する (3)円周状のトンネルから外径 φ 2.3m の鋼管を 泥水式推進工法により築造する (4)鋼管をボルトによ

*1(株)奥村組 技術研究所 (正会員)

*2 (株) 奥村組 東日本支社 土木技術部

り連結後,鋼管内部をコンクリートにより充填し,パイプ ルーフ(パイプを連結することによるトンネルの支保) を形成する (5) 拡幅内部を掘削し,パイプルーフ間に吹 付けコンクリートを施工し,補強鉄板を設置する (6) 掘 削の進行に伴い,逆巻工法により SRC 覆工を施工する, 以上(1)~(6)の手順となる。

2.2 SRC 覆工の概要

図-4に,SRC 覆工の横断方向の断面図,図-5に SRC 構造の縦断方向の断面図を示す。SRC 覆工の構造は,パ イプルーフから設置したアンカーボルトにより円形に加 工した鋼製支保工(H 形鋼 300×300,以下,H-300 と称す る)を吊り,これを用い,型枠および打設時の荷重(コン クリート重量,衝撃荷重他)を負担する構造となる。通 常のトンネルのように,移動式型枠を用い施工すること は,断面が大きいだけでなく,施工基面が状況に応じ変わ るため困難である。このため,掘削段階に応じて,上部か ら覆工を施工する,逆巻工法を想定して設計した。この 際,パイプルーフから吊鋼材を設置し,自重や打設時の荷 重を負担する構造とした。打設時には支保として使用す る鋼製支保工には,供用後には覆工の構造性能を高め,想 定外の事態(大地震等)が発生した場合における構造物 としての安全性を高める役割を期待した。

3. 基本構造設計

3.1 計算条件

トンネルの構造条件は,内径 26.4m,外径 28.8m,厚さ 1.2mの円形とする。土被りは45m,地下水位はトンネル

図-4 SRC 覆工の横断方向の断面図(上部)

表-2 使用材料の物性値

	設計基準強度	σ ck	N/mm ²	40
コンク	ヤング係数	Ec	kN/mm ²	31
リート	許容圧縮応力度	σa	N/mm ²	14
	許容せん断応力度	τ al	N/mm ²	0.27
AH- 65	ヤング係数	Es	kN/mm ²	210
政府 (SD345)	許容引張応力度	σ sa	N/mm ²	180
	許容圧縮応力度	σ sa'	N/mm ²	200

表-3 構造の諸元

	呼称	単位	
部材厚さ	Н	m	1,200
部材幅	В	m	1,000
引張鉄筋径	φ	Mm	35
本数		本	8
引張鉄筋量	As	cm ²	76.528
被り	H-d	cm	15
		cm ²	153.1
	部材厚さ 部材幅 引張鉄筋径 本数 引張鉄筋量 被り	呼称 部材厚さ H 部材幅 B 引張鉄筋径 φ 本数	呼称 単位 部材厚さ H m 部材幅 B m 引張鉄筋径 φ Mm 本数 本 引張鉄筋量 As cm ² 被り H-d cm

天端+35~38m である。上記の荷重条件に基づき,骨組 み解析により計算を実施した。なお,ここでは覆工内部 の H 形鋼はないものとして検討している。荷重条件を **表-1**,使用材料の物性値を**表-2**,構造の諸元を**表-3** に示す。

3.2 計算結果

コンクリート応力の許容圧縮応力度に対する比は0.98, 鉄筋応力(圧縮)の許容値に対する比は,0.90 となって いる。上記の配筋における引張鉄筋比は,0.64 であり,実 験に際しては,この数値を参考とし鉄筋量を設定した。

4. 1/4 縮小モデル軸力導入曲げ試験

4.1 試験概要

外環拡幅部の覆工の鉄筋量は RC として算定している が,覆工の施工時荷重を負担する鋼製支保工により,覆工 の構造性能が向上すると考えられる。その効果を把握す るため,実物の 1/4 縮小モデルを使用し,その効果を確認 する。 試験体の形状は,作用させる軸力を一定にするため, アーチ構造とせず単純梁とする。左右からジャッキにより軸力を導入した上で,中央で2点載荷した(離隔 500mm)。

4.2 試験ケース

(1) RC のみ(2) RC+鋼製支保工(1本)(3) RC+鋼製支 保工(2本)(4) RC+鋼製支保工(3本)の4パターンで2 点載荷で試験を実施した。試験体の寸法は,断面の寸法 を幅 500mm,高さ 300mm,支点間距離 2,500mm,全長 2,820mm である。図-5 に示すように支保工の鋼材とし て,H-300 を 2m ピッチで配置することから,延長方向の 幅を 2m,また厚さを 1.2m として,それぞれの寸法の 1/4 にすることにより,試験体の寸法を設定した。また,H 形 鋼(鋼製支保工)については,断面 2 次モーメントが 1/16 となるように,設定した。H-300 の断面 2 次モーメ ント 20,200(cm⁴)×1/16= 1,263(cm⁴)に対して,H-100 の断 面 2 次モーメント 378(cm⁴)×3 = 1,134(cm⁴) であるため, 実験における最も多い H 形鋼のケースは H-100 3本と し,鋼材量が及ぼす影響を把握するため,H 形鋼を1,2本 としたケースを設定した。

主鉄筋は,SD345,D16 の鉄筋を圧縮側,引張側とも 4 本 ずつ配置した。これは,元設計での主鉄筋は,D35@125 で あるが,このときの引張鉄筋比とほぼ同等の引張鉄筋比 (0.636)となるように設定したためである。代表的な配筋 図を図-6に,断面図を図-7に,実験ケースおよび試験 実施時のコンクリートの圧縮強度を表-4に,試験体の 諸元を表-5に,鉄筋,鋼材の物性値を表-6に示す。

図-6 試験体の代表的な配筋図

⁽左:H形鋼なし,右:H形鋼3本)

図-7 試験体の代表的な配筋図(断面図)

表-4 試験ケース

試験体番号	(1)	(2)	(3)	(4)
鋼製支保工(H形鋼)本数	なし	1	2	3
コンクリート圧縮強度 (試験時 N/mm ²)	33.0	33.0	33.5	33.3

表-5 試験体諸元

鋼製支伯	呆工詳細	H-100×100×6×8	
試験体寸法	高さ : H	300	
(mm)	幅:B	500	
	長さ : L	2820	
È	筋	4-D16(SD345)	
帯	筋	D13@125(SD345)	
フッ	ク筋	2-D13@125 (SD345)	

表-6 鉄筋,鋼材の物性値

材料	材質	用途	降伏応力	やが係数	引張強さ
名			N/mm ²	$ imes 10^4 N/mm^2$	N/mm ²
D16 鉄筋	SD 345	主筋	389.4	18.44	574.8
D13 鉄筋	SD 345	帯筋, フック筋	384.9	18.17	581.1
8t 鋼片	SS 400	H-100 フランシ	334.4	18.63	475.2
6t 鋼片	SS 400	H-100 ウェブ	341.9	18.78	480.4

4.3 載荷条件

構造物は円環状の地中構造物であり,曲げモーメント やせん断力だけでなく,土圧,水圧により円周方向の圧縮 力(軸力)が発生している。実際のトンネルに近い応力 状態での曲げ耐力を評価するために,本試験では試験体 の長さ方向に軸力を作用させて曲げ試験を実施した。

試験体に導入する軸力は,コンクリートに発生する応力が 5N/mm² になるように 750kN とし,載荷中も軸力が一定になるように制御した。実施工においては、パイプルーフによっても軸力を伝達するため、表-1 の算定された応力の 1/2 程度が覆工に作用するものとし、導入する軸力を設定した。

曲げ載荷は前述のとおり中央2点載荷による4点曲げ 試験とし、単調1方向加力とした。加力については、反力

写真-1 試験状況

フレームに取り付けた試験体上部のアクチュエーターより加力用鋼材を介し荷重を漸増させ、ジャッキとピンの間に取り付けたロードセルによって荷重を計測した。支持条件は片側ピン,片側ピンローラーとした。試験体の上面が圧縮破壊し、最大荷重より20%の耐力低下を確認した時点で加力を終了した。試験状況を**写真-1**に示す。

4.4 試験結果

試験結果一覧を表-7,全試験体の荷重一変位関係を 図-8に示す。ここでの変位は、試験体中央部の鉛直方 向変位である。全てのケースにおいて、試験体底版中央 部のひずみが 300μ に達する、120kN 程度の荷重までは、 線形的な勾配を示しており、ケースごとの違いは見られ ない。荷重が 120kN を超え、ひび割れが進展するのに伴 い、徐々に剛性が低下するが、鋼材の本数が多いほど低下 する程度は少ない。

また最大荷重については,鋼材本数が増加するのに伴 い増加し,鋼材なしのケースと比較して,鋼材3本の場合 では,約1.7倍の最大荷重となる。さらに最大荷重時の 変形量は鋼材の増加に伴い,10mm(鋼材なし)から18mm

(鋼材3本)と徐々に増加しており,破壊に至るまでの 変形量が鋼材の本数が多いほど,大きくなることがわか る。また,最大荷重以後の荷重の低下は,鋼材の増加に伴 い大きくなり,また低下時の曲線勾配も急になる傾向が 見られた。

写真-2に、最大荷重時の試験体の状況(鋼材なし、鋼 材3本)、図-9に鋼材3本のケースにおけるひび割れ の進展状況を示す。ひび割れは、試験体中央部の底面に 最初に発生し、荷重の増加とともに、左右下面の支点に向 かい発生する箇所が拡大している。それぞれのひび割れ は荷重とともに上部の加力点に向かい進展し、最終的に は試験体中央部上面に圧壊が生じている。鋼材の有無、 本数によらず、上記のようにひび割れが進展している。 しかしながら、最大荷重時においては、鋼材を配したケー スの方が、鋼材のないケースと比べ、両端の支点方向によ り広範囲にひび割れが分布している。

表-7 試験結果一覧

試験体番号	(1)	(2)	(3)	(4)	
鋼製支保工 (H 形鋼)	本数	なし	1本	2本	3本
底版中央コンクリートひ	荷重 P(kN)	125.5	109.8	118.7	118.7
ずみ 300μ 到達時	変位(mm)	1.22	1.10	1.11	1.07
ひび割れ目視確認	荷重 P(kN)	170.6	153.0	156.9	147.1
時	変位(mm)	2.07	1.87	1.77	1.50
4mm 変形時	荷重 P(kN)	220.7	227.5	247.1	260.9
6mm 変形時	荷重 P(kN)	263.8	281.5	310.9	338.3
8.3mm 変形時 (亦形色 1/200)	荷重 P(kN)	298.1	327.5	379.5	410.9
(変形内 1/300) 	荷重 D(1-N)	300.1	368.7	452.1	522.7
取 八回 里町	変位(mm)	9.9	13.11	15.54	17.82

鋼材なし

鋼材3本 写真-2 最大荷重時の載荷状況

図-10に鋼材本数が3本のケースにおける主鉄筋の 荷重-ひずみ関係を,図-11に鋼材の荷重-ひずみ関 係を示す。図-10(a)より,上端の主鉄筋については, 支間中央部で荷重の増加に伴い圧縮ひずみが増加し,最 終的には降伏していることがわかる。図-10(b)より, 下端の主鉄筋については,軸力を導入していることによ り載荷当初は圧縮ひずみが生じているが,荷重が 100kN を超えた時点で,引張側に転じて徐々にひずみが増加し て,支間中央部では最終的に降伏していることがわかる。 また,せん断スパンの中央の位置においては,上端の鉄筋, 下端の鉄筋ともに,除荷とともにひずみが回復しており, 線形的な挙動を示している。図-11より,鋼材につい ては,下端のフランジでは,荷重の増加に伴い引張ひずみ が増加しており,上端のフランジは圧縮ひずみが増加し ている。また,主鉄筋の中央部が降伏し,コンクリートが 圧壊した段階でも鋼材の下フランジは弾性域であり,除 荷に伴いひずみが0近くまで低下している。

(b) 主鉄筋 下端部

図-10 主鉄筋の荷重-ひずみ関係

図-11 鋼材の荷重-ひずみ関係

		衣-8		,
番	鋼材	導入	最大曲げ	最大曲げ
号	本数	軸力	モーメント	モーメント
		(kN)	実験値	計算値
			$(kN \cdot m)$	$(kN \cdot m)$
1	なし	750	150.0	143.7
2	1本	750	184.4	188.3
3	2本	750	226.4	219.1
4	3本	750	260.4	255.4

4.5 実験値と計算値の比較

表-8に実験における最大曲げモーメントと,同一条 件における最大曲げモーメントの計算値を示す。計算に は, RC 断面計算 Ver7.6 (フォーラムエイト社)を使用 し、コンクリート強度には実強度を用いた。鋼材の本数 に関わらず実験値と計算値がほぼ一致していることを確 認した。

5. まとめ

超大断面の拡幅トンネルにおける SRC 覆工におい て、1/4 縮小モデルの試験体を用い、鋼材の配置が耐力に 及ぼす影響について,軸力を導入した曲げ試験により検 証した。その結果、以下の知見が得られた。

- (1) 鋼材なしのケースと比較して,鋼材の本数が増加 するのに伴い,最大荷重は増加する。鋼材3本の ケースでは鋼材なしのケースの 1.7 倍に達し、こ の結果は計算結果とほぼ一致した。線形域にお ける剛性は、鋼材の有無、本数によらず変わらない。 また,破壊に至るまでの変形量は,鋼材の本数の増 加に伴い,増大している。
- (2) 外環地中拡幅トンネルにおいては SRC 覆工とす ることにより,耐力向上を期待することができる。 また、最大荷重の増分は、線形範囲を超える荷重が 作用した状況におけるものであり,設計に対する 余裕とすることが適切であると考えらえる。

6. おわりに

東京外かく環状道路における拡幅部は、都市部での前 例のない超大断面トンネルであるため,安全性の高い構 造とすることが要求されている。本検討により,覆工内 部の鋼材が、超大断面トンネルの構造安全性の向上に寄 与することを確認できた。本稿が,今後の同種工事にお ける設計および施工においても活用されれば幸いである。

謝辞

本検討は、国土交通省関東地方整備局発注の東京外環 トンネル地中拡幅部における技術開発業務(その11) の一環として実施した。国土交通省関東地方整備局東京 外かく環状国道事務所の皆様ならびに東京外環トンネル 施工等検討委員会(委員長:今田 徹 東京都立大学名 誉教授)の皆様には多大なるご指導・ご助言を頂きまし た。また,実験計画に際しては,東京工業大学大学院 二 羽淳一郎教授のご助言を頂きました。ここに感謝の意を 表します。

参考文献

- 1) 林 伸郎, 大長 唯宏, 大関 宗孝, 堀 誠行, 「超大 型シールド工事用セグメント開発実験」土木学会第 49回年次学術講演会, pp1258-1259.1994
- 2) 三桶 達夫, 丸屋 剛, 堀口 賢一, 村田 裕志, 西田 与志雄, 服部 佳文, 川島 広志, 「鋼繊維補強コンク リートを用いた大型セグメントの開発」、大成建設技 術センター報第 41 号, pp28-1 - 28-5. 2008