論文 硫酸劣化を考慮した持続荷重を受ける無筋コンクリートはりの破壊 解析

渡部 孝彦^{*1}·佐藤 靖彦^{*2}

要旨:下水道施設における RC 構造物の硫酸劣化問題に関する研究が数多くなされているが,構造物の寿命 の予測ができるまでには至っていない。本研究では,無筋コンクリートはりを対象に,持続荷重下で硫酸の 影響を受ける場合のひび割れ進展を追跡できる解析法を開発した。その方法は,硫酸劣化により変化するセ メント水和物量・空隙量に基づき材料特性値を低下させ,RBSM による構造解析と有限体積法による物質移 動・反応解析を組み合わせたものである。パラメトリック解析を通じて,本手法の特徴を把握した。 **キーワード**:無筋コンクリート,硫酸劣化,破壊解析,パラメトリック解析

1. はじめに

近年,我が国では下水道施設の老朽化問題が顕在化し ている。国土交通省の調査によると、下水道施設が首都 圏で本格的に整備され始めたのは 1940 年代ごろであり、 建設延長はその後徐々に伸び、2000 年ごろにピークを迎 えている¹⁾。今後も敷設 50 年を越える下水道施設は増加 する状況にある。しかし、下水道施設は、地中において 化学的作用と力学的作用を同時に受けるため、その維持 管理は容易ではない。合理的な維持管理の実施を可能と する新しい技術の開発が望まれる。

三浦らは、Ca溶脱や硫酸劣化によるモルタルのメゾス ケールでの硫酸溶液浸漬実験と力学実験を行い、セメン ト水和物量・空隙量と各材料特性値との関係を明らかに した上で^{2),3},化学的要因により劣化したモルタルの力 学挙動を再現できる解析法を開発した(図-1参照)^{4),8)}。

著者らは、この解析法を、持続荷重を受ける無筋コン クリートはりのひび割れ進展・破壊解析が可能なシステ ムへと拡張した。本論文において、解析法の概要を示す

図-1 化学---カ学連成解析システム⁸⁾

とともに幾つかの感度解析結果に基づき本解析法の特徴 を把握する。

- 2. 解析方法
- 2.1 解析対象

著者らの最終的なターゲットは,下水道 RC 構造物の 残存耐力予測であるが,本論文では,一定荷重下で硫酸 による劣化が進行し破壊に至る無筋コンクリートはりを 対象とした。

2.2 解析フロー

本解析のフローを図-2に、概念図を図-3に示す。本 研究では、構造解析と硫酸劣化解析を交互に実施するこ とで、持続荷重下での変形の増加と破壊の再現を試みる。 具体的には、三浦らが開発したシステム^{4),8)}を、材料モ デルの設定、構造解析、硫酸劣化解析を順番に実行させ るシステムへと拡張した。

図-3 に示すように、コンクリートはりが、ある荷重 下で化学的侵食を受けると、強度と弾性係数が低下する ため荷重が低下する(図-3(a)のAからB)。その荷重 低下を補うために、はりは変形を増加させることで内力 を作り出す(図-3(a)のBからC)。図-3(a)中のBにお いて、三浦らが見出したセメント水和物量・空隙量と材 料特性値との関係式から、硫酸劣化後の引張強度、せん 断強度、弾性係数、破壊エネルギーを求め、その情報を、 応力-ひずみ関係もしくは応力-変位関係に反映させる。 すなわち、硫酸による「材料の劣化」を「力学的性質の 変化」として表現する。このことを概念的に示したもの が図-3(b)である。劣化程度が小、中、大と進むにつれ、 応力と変形の関係が変化し、実際の応力は、図-3(b)の 実線のごとく推移することになる。

*1 北海道大学大学院工学院 北方圈環境政工学専攻 (学生会員) *2 北海道大学大学院工学研究院 北方圈環境政策工学部門 准教授 工博 (正会員)

このシステムにおける構造解析は、硫酸劣化を反映さ せた材料モデルを用いた剛体バネモデル(以下 RBSM) による静的解析である。一方、硫酸劣化解析は、有限体 積法による物質移動解析と化学反応解析であり、経過時 間に応じた硫酸イオンの浸透による濃度計算と硫酸イオ ンとの化学反応によって減少する水和物量の算出を行う。 2.3 材料のモデル化

三浦らは、硫酸による劣化機構を、空隙緻密化過程と 膨張ひび割れ過程の二つに分けて整理している³⁾。物理 的性質の変化は、緻密化過程においては空隙率により、 膨張ひび割れ過程においては析出物量により説明できる としており、緻密化過程では空隙率を変数とした関数 ω_d を導入することで劣化した材料特性値を予測し(式(1))、 膨張ひび割れ過程では析出物の生成に伴うセメント水和 物の減少量を変数とした関数 ω_e によって硫酸劣化の影 響を考慮する(式(2))。材料特性値(弾性係数,引張強 度,せん断強度,破壊エネルギー)は実験によって得ら れた係数(**表**-1)を式(1),(2)に用いることでそれぞれ求 められる。

2.4 RBSM による構造解析

RBSMはKawaiによって開発された構造解析手法である⁵⁾。その特徴は、要素間に垂直バネ、せん断バネを設け、バネの破壊により要素境界でのひび割れを表現することにある(図-4)。本解析で用いたコンクリート構成則を図-5に示す。

表-1 実験係数⁸⁾

実験係数	Ε	f_t	f_s	G_{f}
k	1.5	1.2	1.8	1.0

空隙緻密過程

$$\frac{F}{F_0} = \omega_d (1 - \omega_e) exp\left(-k\frac{\Delta p}{p_0}\right) \tag{1}$$

膨張ひび割れ発生過程

$$\frac{F}{F_0} = \omega_d (1 - \omega_e) exp\left(-k \frac{0.25p_0}{p_0}\right) \tag{2}$$

 F, F_0 :変化後,初期の材料特性値(弾性係数 E,引張強 度 f_i , せん断強度 f_s ,引張破壊エネルギー G_f), ω_d , ω_e : 影響度係数, k:材料値ごとの実験係数(表-1), p_0 ;初 期空隙率(%), Δp :空隙変化率(%)

劣化による構成則の変化度を示す一例として,浸漬日数 を0日,200日,400日とした場合の引張応力とひび割れ 幅関係を図-6に示す。この構成則は,要素寸法を 20~30mm程度とした RC はりの曲げせん断解析を通じて その妥当性が確認されたものである^の。

2.5 有限体積法による硫酸劣化解析

硫酸劣化解析は,物質移動解析と化学反応解析からな る。その流れを図-7に示す⁸⁾。硫酸イオンの物質移動 解析には,Fickの拡散方程式を修正した修正拡散方程式 を支配方程式として使用している(式(3))。

k_n:垂直ばね、k_n:せん断ばね、 h₁,h₂:母点から要素境界辺に下ろした垂 線の長さ

 f_{c} : 圧縮強度, ε_{0} : 圧縮ピークひずみ, ε_{cu} : 最大圧縮 ひずみ, γ_{0} : せん断ピークひずみ, γ_{u} : 最大せん断 ひずみ, ε_{t} : 引張ピークひずみ, ε_{tu} : 最大引張ひず み

図-6 劣化による引張軟化曲線の変化

$$\frac{\partial(p_p, C_{liq})}{\partial t} = \frac{\partial}{\partial x} \left(\overline{D}_w \frac{\partial(p_p, C_{liq})}{\partial x} \right) + \frac{\partial C_{sol}}{\partial t}$$
(3)

 C_{liq} :液相中の硫酸イオン濃度 (mol/l), C_{sol} :固相中の 硫酸イオン濃度 (mol/l), p_p :セメントペースト中の空 隙率 (%), D_w : ひび割れ幅を考慮した硫酸イオンの拡 散係数 (mm²/sec)

ここでは、各要素での硫酸イオンが、セメント水和 物である CH および C-S-H と化学反応し減少すること を考慮し、消費項が加わっている。次に残存セメント 水和物から pH の推定を行い、pH の大きさから析出物 が異なることより、エトリンガイト、二水石膏の析出

図-5 圧縮・引張・せん断構成則

$$\overline{D_p} = \frac{D_{pL} + D_{pR}}{2} \tag{4}$$

$$\overline{D_w} = \alpha \, \frac{D_{pL} + D_{pR}}{2} \tag{5}$$

(b) ひび割れがある場合 図-8 拡散係数の求め方

量を計算し、空隙の変化を計算する。

また,構造解析から引き渡されるひび割れ幅は,拡 散係数の算出(図-8)に使用される。本解析では,隣 接する要素間のイオンの移動は、2つの要素の拡散係 数 (D_{pL}, D_{pR}) を平均した \bar{D}_p (式(4))により支配され ると考え,もし要素間にひび割れが生じている場合に は, \bar{D}_p に割増係数 aを掛けることでその影響を考慮す る(式(5))こととした。なお、この拡散係数の考え方 の妥当性は、実験結果との比較を行うなどして今後検 討する予定であるが、本研究では、次章において、割 増係数 aを変数としたパラメトリック解析を通じて、 拡散係数が寿命に及ぼす影響を把握することとする。

3. 無筋コンクリートはりの破壊解析

3.1 解析モデル諸元

本研究では、200mm×200mmの正方向断面を有する 長さ2mの無筋コンクリートはりを対象とした。無筋 コンクリートはりは、単純支持され中央に集中荷重を 受ける。図-9に要素分割図を示す。RBSMにおいて、 ひび割れ進展はメッシュ形状に大きく左右されること から、ボロノイ要素分割手法を用いてその影響を軽減 した。

母点は、乱数で発生させている。各バネに与えた材料 特性値の初期値は、表-2 に示されている。ただし支 点周りの要素は、支点での破壊が起こらないよう通常 の材料値の2倍の値を与えてある。なお、本解析では 自重は考慮していない。

解析では、変位制御により静的耐力の約50%である 6kNを持続的に作用させた状況で、はりの下面から境 界要素の硫酸イオン濃度が2500mg/lに保たれるよう 硫酸を供給した。なお、この値は、一般的な下水道施 設の水中の硫酸イオン濃度が50~400mg/lであるもの の、海水の流入等が起こる箇所では海水の硫酸イオン 濃度が2700mg/lと高いため、下水道施設の中でも部分 的には高い硫酸イオン濃度値を示すこともあるという 事実を参考に定めた。構造解析と硫酸劣化解析を相互 に実施する際、硫酸劣化解析で劣化を進行させる時間 増分が必要となるが、この増分をインターバルと呼び、 30日に設定した。インターバルが解析結果に影響を及 ぼすと考えられるため、その感度に関しては後ほど検 討する。

3.2 解析結果

図-10に、単調に破壊に至らしめた解析(静的解析) と構造解析と硫酸劣化解析とを相互に行った解析(連 成解析)に得られた荷重と変位との関係を示す。上載 荷重6kNに達する前では静的解析と同様の経路をたど っており、その後上載荷重を維持したまま変位が大き くなっている。これは硫酸劣化解析により減少した荷 重が応力の再分配を繰り返すことで所定の荷重を維持 していることによる。

また,連成解析においては,静的耐力時の変位の2 倍以上となる1.0mm あたりで急激に荷重が低下して いる。過去に行われた硫酸浸漬試験によって劣化した モルタル供試体の曲げ試験によると,浸漬日数が長い ほど最大ひび割れ幅が増加傾向にあることがわかって おり⁸⁾,本研究の連成解析において,静的解析よりも 変位が増加した事実と符合する。また,終局時の挙動 が静的解析結果に比べ脆性的な理由は,引張破壊エネ ルギーの低下が原因と考えられる。

静的解析と連成解析の破壊時のひび割れ性状を,図 -11に示す。連成解析では、ひび割れが広範に発生し ている。これは、下縁の C-S-H の減少がスパン全長に わたって見られる事実と符合する(図-12参照)。

いずれの場合も,対象が無筋コンクリートであるため, 最終的には,1本のひび割れがはり上縁に達し,破壊 に至っている。しかし,静的解析と連成解析とではそ の位置が異なる。静的解析では,曲げモーメントが最 大の位置のひび割れが進展しているが,連成解析では, その位置が左側に移動している。これは,劣化が,ス パン全体に一様に起こるものではないことを示してい る。

3.3 パラメトリック解析

ここで,解析結果に影響を及ぼすと考えられる構造 解析と硫酸劣化解析のインターバルと拡散係数をパラ メータとした感度解析を行う。その目的は,本解析法 の特徴を把握することにある。なお,各ケースにおい て,要素分割の影響も調べるために,乱数を3回発生 させ3つのモデルを作成した。それらを,Model1, Model2,Model3と呼ぶ。初期値としてインターバル を30日,拡散係数の割り増し係数を2.0,モデルを Model1に設定しおり,各変数の影響はそれぞれ順に変 更していくことにより感度を調べた。

(1) インターバルと要素モデルの影響

インターバルは先に示した 30 日に加え,50 日,150 日を設定した。ここで構造解析における強制変位量が インターバルに比べ大きすぎると,硫酸劣化解析の劣 化による反力の減少よりも1ステップの載荷による反 力の上昇が上回ってしまうため,強制変位量はインタ ーバル 30 日では 0.005mm,50 日,150 日では 0.01mm

とした。

荷重-変位曲線と破壊に至った日数(以下,ライフタ イム)の比較をそれぞれ,図-13,図-14に示す。イ ンターバルの違いのため持続荷重載荷中の挙動は異な っているものの破壊時の変位はおおむね一致している。 しかしライフタイムには変化が生じている。なお,図 -10と図-13の解析結果が異なっているのは両者に 異なるメッシュのモデルを使用しているためであり, ライフタイムに幅が生じているのは,破壊がインター バル期間で起こっていると想定されるので,単一の値 として求められないためである。

また,図-13に示す3種類の要素モデルに対する解 析結果によれば、要素分割の違いもライフタイムに影 響を及ぼすことがわかる。なお、3つのモデルの静的 破壊荷重は、12.3、12.6、12.8kN とばらつきが極めて 小さく、ライフタイムのばらつきは、静的耐力のばら つきによるものではなく、材料劣化に起因するもので あることがわかる。すなわち、要素分割の違いが材料 劣化の分布に影響を及ぼし、破壊断面が変化すること で、ライフタイムが大きく異なったものと考えられる。 本解析は無筋コンクリートを対象としているため、曲 げひび割れの発生位置が破壊荷重に大きく影響する。

(2) 拡散係数の影響

式(4)に示したひび割れ幅による拡散係数の割増係 数を,1.0,2.0,10 とした場合のライフタイムを図-16に示す。αが1.0と2.0とでは違いが見られず,αを 10 とした場合, ライフタイムが若干短くなるという結 果となった。本解析手法では, 拡散係数はライフタイ ムに大きな影響を及ぼす要因ではないことがわかった。

各モデルと各パラメータにおける破壊時のひび割れ 進展図を確認すると,ライフタイムが大きく異なる場 合にはひび割れ位置に相違が見られた。

以上,無筋コンクリートに対する解析結果より,劣 化による変位の増加や,静的載荷とは異なるひび割れ の性状など,劣化時の構造物の特徴を再現できる可能 性を示した。今後は、ライフタイムの妥当性評価に関 して検討を深めたいと考えている。

4. まとめ

本研究は硫酸劣化が生じる下水道構造物のライフタ イム予測を解析的に行うことを目標として,構造解析 と硫酸劣化解析を組み合わせた解析法を開発した。解 析法は,無筋コンクリートを対象としたパラメトリッ ク解析を通じて,連成解析におけるインターバルなら びに要素分割のライフタイムに及ぼす影響は比較的大 きく現れるが,ひび割れの影響を含めた拡散係数の影 響は小さく現れるといった特徴を有していることが明 らかとなった。

謝辞

本研究を行うにあたり,名古屋大学助教 三浦泰人 博士に貴重なアドバイスを頂きました。ここに心より 深謝致します。また,本研究の一部は,内閣府総合科 学技術・イノベーション会議の「SIP インフラ維持管 理・更新・マネジメント技術」(管理法人:NEDO)に よって実施されました。

参考文献

- 国土交通省「下水道事業のストックマネジメント 実施に関するガイドライン-2015 年版」 http://www.mlit.go.jp/mizukokudo/sewerage/crd_sewe rage_tk_000135.html
- 三浦泰人,佐藤靖彦:メソスケールでの Ca 溶脱 により変化するモルタルの力学的性質と物理化学 的性質の関係性評価,コンクリート工学論文集, Vol.25, pp.109-118, 2014
- 三浦泰人、佐藤靖彦、中村光:硫酸劣化したモル タルのセメント水和組織の変質と準微視的力学的 性質との関係、コンクリート工学論文集, Vol.26, pp.1-9, 2015
- Yasuhiko Sato, Taito Miura, and Hikaru Nakamura : Meso-scale Modeling of Mechanical Properties of Chemically Deteriorated Mortar, Proceedings of Mechanics and Physics of Creep, Shrinkage and Durability of Concrete and Concrete Structures, 2015
- Kawai, K. : New element models in discrete structural analysis, Journal of the society of naval Architects of Japan., 141, pp.187-193, 1977
- 6) Yasuhiko Sato and Khalid Farah : Modeling Flexural Behavior of RC Beams Strengthened with FRP by Using RBSM, Proceedings of 4th International Symposium on Life-Cycle Civil Engineering (CD-ROM), 2014
- Kohei Nagai, Yasuhiko Sato, Tamon Ueda : Mesoscopic Simulation of Failure of Mortar and Concrete by 2D RBSM, Journal of Advanced Concrete Technology, Vol.2, No.3, pp.359-374, Oct. 2004
- 8) 三浦泰人:セメント系複合材料の準微視的化学--力学連成解析システム,北海道大学学位論文,2015