論文 せん断部材と曲げ部材が混在する鉄筋コンクリート造架構の擬似動 的実験に基づくエネルギー応答性状に関する検討

菅野 秀人*1·藤井 賢志*2·櫻井 真人*3·西田 哲也*4

要旨: せん断部材と曲げ部材からなる並列1自由度系の擬似動的実験を実施し, エネルギー応答性状を検討 した。入力波は目標スペクトルが同じで, 位相特性が異なる4つの模擬地震波とした。半応答サイクル間の 瞬間入力エネルギーと応答変位との間には相関が見られたが, 片押し的な応答が顕著な場合や更新変位量が 微増の場合には, これらの相関から外れる傾向があった。半応答サイクル間の単位時間あたりの瞬間入力エ ネルギーの最大値は4ケースの実験でほぼ同じ結果となり,継続時間を考慮することで, 瞬間入力エネルギー と総入力エネルギーとの対応関係を示した。

キーワード:擬似動的実験,エネルギー応答,瞬間入力エネルギー

1. はじめに

現在の既存建築物の耐震診断法は基本的に建築物の保 有する強度と変形能力の積を指標とする評価が行われて おり、この手法では地震時の最大変形量が不明であるた め、地震時の損傷状態を評価することが困難である。日 本建築学会では、既存鉄筋コンクリート造・鉄骨鉄筋コ ンクリート造建築物を対象とした耐震診断や損傷度評価 において、等価線形化法による地震時最大応答推定が検 討されている¹⁾。

せん断破壊が先行する部材のような脆性部材が混在す る鉄筋コンクリート (RC) 造架構を対象とした既往の研 究は,数値解析的な検討や脆性部材のモデル化を目的と した静的漸増載荷実験が主流であり, 地震応答性状を実 験的に検討した事例は少ない。そこで筆者らは文献 2) において、せん断破壊が先行する RC 造柱と曲げ降伏が 先行する RC 造柱からなる並列1自由度系モデルを対象 とした擬似動的実験を行い、耐力低下を生じる架構の等 価減衰は,変位ピーク時点の応答変位量だけではなく, それまでに経験する応答サイクル数に依存することを示 した。この場合の等価減衰は、架構のエネルギー応答か ら評価されるため、このような脆性部材が混在する RC 造架構のエネルギー応答性状を検討することは、地震時 最大応答を推定する上で重要であると考える。そこで本 論文では、文献2)の実験結果に加えて、同仕様のRC 造架構を対象に、位相特性の異なる2つの模擬地震波を 入力した擬似動的実験を実施し、これらのエネルギー応 答性状について,特に応答半サイクル間でのエネルギー 応答に着目して検討した。

2. 擬似動的実験の概要

2.1 検討 RC 造振動モデル

擬似動的実験で想定する振動モデルは、図-1に示す ような、せん断部材と曲げ部材とが並列に設置されたせ ん断1質点系モデルである。文献2)では、せん断破壊 が先行する柱(RCS)と曲げ降伏が先行する柱(RCM) を準備し、これらを加力装置に各々設置して2体同時 加力の擬似動的実験を行った。本論文では、このうち RCSのみを実試験体とする擬似動的実験を実施した。 RCSは文献2)と同仕様の試験体とし、RCMは文献2) の実験結果に基づく数値モデルとした。なお、質点重量 は1000kNとし、内部粘性減衰は初期剛性比例型として 減衰定数1%としている点は文献2)と同じである。

2.2 RC 造柱試験体

RCS の形状および配筋図を図-2に、構造諸元と材料 特性を表-1,2に示す。柱断面寸法は300mm×300mm とし,柱内法寸法は600mm(せん断スパン比1.0)である。 また,文献2)と同様に、せん断降伏後の急激な耐力低

図-1 想定する RC 造振動モデルと加力装置外観

秋田県立大学	システム科学技術学部 建築環境システム学科 准教授 博士(工学)(正会員)
千葉工業大学	工学部 建築都市環境学科 教授 博士(工学)(正会員)
秋田県立大学	システム科学技術学部 建築環境システム学科 助教 博士(工学)(正会員)
秋田県立大学	システム科学技術学部 建築環境システム学科 教授 博士(工学)(正会員)
	秋田県立大学 千葉工業大学 秋田県立大学 秋田県立大学

試験体名	$b \times D^{*1}$	${h_0^{*2}}/D$	$P_{w}(\%)^{*3}$	$P_{g}(\%)^{*4}$	軸力比 ^{*5} [軸力]	曲げ強度 ^{*6} 計算値	せん断強度 ^{*7} 計算値	せん断 ^{*8} 余裕度
RCS	300mm × 300mm	2.0	0.28	2.65	0.25 [432kN]	413kN	274kN	0.66

^{*1} $b \times D$: 柱幅 × 柱せい, ^{*2} h_0 : 柱内法寸法, ^{*3} P_w : せん断補強筋比, ^{*4} P_g : 主筋比, ^{*5} 軸力比 = $N/(bD\sigma_B)$ [N: 軸力, σ_B : コンクリート実強度], ^{*6} 曲げ降伏時せん断力, ^{*7} 荒川 mean 式による, ^{*8} せん断強度計算値/曲げ強度計算値

図-2 試験体配筋図(寸法単位mm)

コンクリ-	ート *1	鉄筋			
${\sigma_{\!\scriptscriptstyle B}}^{*2}$	ε_B^{*3}	鉄筋径	σ_{y}^{*4}	ε_y^{*5}	
(N/mm^2)	(%)	[鋼種]	(N/mm^2)	(%)	
18.8	0.167	主筋 D16 [SD345]	396.4	0.216	
		帯筋 D6 [SD295]	324.2	0.199	

表一2 材料特性

*1 4 週強度試験結果による、*2 σ_B : 圧縮強度、*3 ϵ_B : 圧縮強度時 ひずみ度、*4 σ_v : 降伏強度、*5 ϵ_v : 降伏時ひずみ度

下に対して安定した加力制御を補償するため,試験体の 加力方向両側面に平バネ2枚を設置している。平バネに は板厚32mm,幅600mmの平鋼(SM490A)を用い,内 法高さは900mmとした。擬似動的実験では,応答水平 変位から平バネ(水平剛性8.1kN/mm)の負担せん断力 を求め,水平ロードセルの計測値からこれを差し引いて RCSのせん断力を評価した。

RCM は文献 2)の実験結果を鑑みて,復元力モデルとして図-3の武田スリップモデルを採用した。図-4には実験結果と数値モデルの比較を示す。

2.3 入力地震波

入力波には、文献 2) と同様に告示スペクトルに基づ く模擬地震波を採用した。文献 2) では、位相特性とし て El Centro (1940) NS (ART-ELC) と Sylmar (1995) NS (ART-SYL) の 2 つの観測記録を使用した。本論文 では、繰り返し数の違いを顕著にするため、K-NET 仙

表-3 入力地震波諸元

入力波	$A_{\rm max}^{*1} ({\rm cm/s}^2)$	$V_{\rm max}^{*2}$ (cm/s)	$t_d^{*3}(s)$
ART-SND	351.2	31.9	24.81
ART-PLS	460.5	48.0	0.47
ART-ELC	380.1	35.2	3.92
ART-SYL	363.9	40.7	5.39

*1 地動最大加速度, *2 地動最大速度, *3 有効継続時間(加速度 2 乗パワーの 5% から 95% までの時間

台 (2011) NS の位相特性を用いた模擬地震波 (ART-SND) と, ランダム位相に図-5の時間包絡関数を適用した模 擬地震波 (ART-PLS) の2つを採用した。表-3に文献 2)の入力波を加えた計4波の地震波諸元を,図-6,7 には時刻歴波形と加速度応答スペクトルを示す。

なお, ART-SND は、2 つの主要動を含む 120 秒の模 擬地震波を準備していたが、実験において1 つ目の主要 動に対する応答変形が大きく、さらに応答が大きくなる

と予想される2つ目の主要動までの実験が困難と判断 し50sで中断した。このため、目標スペクトルに対し、 ART-SNDの応答スペクトルはやや誤差が大きくなって いる。ART-ELCについても、10秒間の入力波に対し5.88s で実験を中断した²⁾。

2.4 実験結果の概要

図-8に各実験の慣性力-変位関係を示す。ここで 慣性力は、応答計算の加速度より算出した。すなわち RCSのせん断力(平バネのせん断力を除く)と計算上 のRCM せん断力と粘性減衰力の和を表す。ART-SND では、水平変位が-2.2mm(部材角1/272)付近に達した 時点(20.74s)で計7段の帯筋のうち、下から3段目が 降伏し、せん断ひび割れが確認された。変位符号が反転 して+2.0mm(部材角1/300)付近に達した時点(21.40s) で4、5段目の帯筋が降伏し、さらに+3.5mm(部材角 1/170)付近に達した時点(21.45s)でRCSは最大耐力 (256.2kN)となった。その後、繰り返し応答の過程で耐 力が低下して、26.00s時点で最大応答変位-22.1mm(部 材角1/27)となった。

ART-PLS では,正側 +0.63mm (部材角 1/950) に変位 した後,負側に大きく変位する片押し的な応答となった。 変位 -3.26mm (部材角 1/184) で RCS は最大耐力 (290.2kN) に達し,この時点 (0.64s) で下から 3 ~ 6 段目の帯筋の 降伏が確認された。最大耐力後は,耐力が低下しながら 応答変位が増大し,0.88s 時点で最大応答変位 -18.01mm

(部材角1/33)に到達した。

図-9にはRCSの荷重-変位包絡曲線を示す。文献2) のART-ELCやART-SYLの結果と比較して,ART-SND のせん断耐力はやや低いが,耐力低下の性状は,文献2) とおおむね同様の結果となっている。一方で,ART-PLS では,最大耐力以後の耐力低下の性状が,他のケースと 比較してやや異なる性状を示した。

3. エネルギー応答の検討

3.1 エネルギー応答の定義

本論文で扱う並列1自由度系のエネルギーの釣り合い を次式のように定義する。 $E_V + E_D + E_{HS} + E_{HM} = E_I \tag{1}$

ここで、 E_V は運動エネルギー、 E_D は内部粘性減衰に よる消費エネルギー、 E_{HS} は RCS の履歴吸収エネルギー、 E_{HM} は RCM の履歴吸収エネルギー、 E_I は地震動が系に 与える総入力エネルギーを表す。

エネルギー入力の激しさを表す指標として、ある単位 時間 Δt における入力エネルギーの増分量を考える瞬間入 力エネルギー ΔE がある。この Δt の考え方には種々の提 案があるが、いずれも系の周期に着目している点に大き な違いはない。本論文では、中村・井上ら³⁾の定義に 着目し、ある応答変位のピークから反対側変位のピー クまでに要する時間($E_V = 0$ となる時点から次に再び $E_V = 0$ となる時間)を Δt と定義し、この応答半サイク ル Δt 間に系に入力されたエネルギーを瞬間入力エネル ギー ΔE と定義し、 ΔE の最大値を ΔE_{max} とした。

この ΔE は $\mathbf{2} - 10$ のように系の履歴ループと対応する ため、地震動の周期特性が支配的な過渡応答に対しても 評価しうるものと考える。なお、 Δt 間に消費された各エ

ネルギーを ΔE_D , ΔE_{HS} , ΔE_{HM} のように表すこととした。 3.2 エネルギー応答の性状

図-11 に算出したエネルギー応答時刻歴を示す。 ART-SNDでは、RCSの履歴吸収エネルギー E_{HS} が帯筋の降伏時から漸増し、最大耐力時点(21.45s)で E_I に対して E_{HS} は約70%を占めた。その後、応答の増大に伴い、 E_{HM} や E_D の占める割合が相対的に増加し、最大応答変位時点(26.00s)では、 E_{HS} は41%、 E_{HM} は36%、 E_D は23%となった。さらに実験終了時点では、 E_{HS} は32%、 E_{HM} は40%、 E_D は28%の割合となった。これは最大応答以降、多数回の繰り返し応答の過程で、RCSはスリップ性状が顕著となり、履歴ループが描く面積が小さくなったためであると考えられる。ART-PLSでは、片押し的な応答より E_{HS} が E_I に占める割合が高く、最大耐力時点(0.64s)で約66%、最大応答変位時点(0.88s)で63%を占め、実験終了時点では、 E_{HS} は51%、 E_{HM} は34%、 E_D は15%の割合となった。

3.3 **Δ**Eと応答変位の関係

図-12 に ΔE の時刻歴を示す。ここで、 ΔE 時刻歴の 縦軸は ΔE を単位時間 Δt で除した値である。応答変位(の 各ピーク)が大きい時点での ΔE (棒グラフの各矩形面積) も大きくなっており、これらの対応関係がうかがえる。 また、 $\Delta E_{\text{max}}/\Delta t$ に着目すると、いずれの入力地震波で も 15kNm/s 程度と同程度の値となっている。これにつ いては 3.4 の考察で後述する。

図-13の変位ピークが更新した際のΔEとピーク変位

の関係には、ピーク変位が増大すると ΔE も増加する相 関が見られる。このことは地震時の ΔE_{max} がわかれば、 最大応答変位が推定可能であることを示唆する。これは 曲げ部材のみを対象とした文献 3) においても既に述べ られており、せん断部材が混在する本モデルにおいても 同様の知見が得られた。ART-PLS は、他の相関から外 れているが、これは**図**-9 に示した RCS の荷重一変位 関係の違いが原因と考えられる。また ART-SYL では、 最大応答変位(10mm)付近の ΔE にばらつきがあるが、 これは前経験変位から当該ピーク変位までの増加量が小 さいためにスリップ性状によりループ面積が小さくなっ たためと考えられる²。

次に変位ピークが更新した際の $\Delta E_{HS} \ge \Delta E_{HM}$ に着目 し、各復元力モデルによる計算結果と比較した。RCS には耐力低下を考慮した武田スリップモデル(図-14) を採用した。また ΔE_{HS} を計算するにあたり、文献 3) を参考に履歴ループを Type I ~ III の 3 種類設定した。 Type I は片振幅の履歴ループであり、スケルトンカー ブを辿り当該ピーク変位に達すると仮定する。Type II は、当該ピーク変位(δ_p) に更新する前の変位ピーク値 は ($\delta_p/2$) と仮定する (図-14)。Type III はピーク変位

値での定常履歴ループを意味する。

RCM は 2.2 で述べた武田スリップモデル (図-3) とし, RCS と同様に Type I ~Ⅲを仮定して計算した。

図-15,16には変位更新時における各試験体の履歴 吸収エネルギーと計算結果を示す。 ΔE_{HM} では、実験 結果はおよそ Type I と II の間に分布している。一方で ΔE_{HS} は実験結果にばらつきが多く、また Type I ~ III よ る計算結果の差も大きい。 ΔE_{HS} については、変位ピー ク時の応答変位量だけなく、前ピーク時の応答値や半サ イクル応答の偏りの影響も大きいと考えられる。

3.4 ΔEとEIに関する考察

ランダム振動論において,継続時間 t_1 ,パワースペクトル密度 S_0 のホワイトノイズ地動に対する,1自由度系の単位質量あたりの入力エネルギー E_I/m は,近似的に次式で表される⁴⁾。

図-14 RCSの復元カモデルとType Ⅱの履歴ループ

$$\frac{E_I}{m} = \frac{1}{2}S_0 t_1 \tag{2}$$

また、半応答サイクル∆tの間に入力される瞬間入力エネルギーの全継続時間中の平均値を→Eとし、当該時間 においても式(2)が成立すると仮定すると次式が導かれる。

$$\frac{\overline{\Delta E}}{m} = \frac{1}{2} S_0 \Delta t \tag{3}$$

ここで、各エネルギー E_I 、 ΔE 、 $\overline{\Delta E}$ 、 ΔE_{max} の等価速 度換算を、それぞれ V_E 、 $V_{\Delta E}$ 、 $V_{\overline{\Delta E}}$ 、 $V_{\Delta E_{max}}$ と表す。この とき $V_{\overline{\Delta E}}$ と $V_{\Delta E_{max}}$ との間に $V_{\Delta E_{max}} = a \cdot V_{\overline{\Delta E}}$ (aはピーク ファクター)の関係があると仮定すると式 (2)、(3)よ り次式が成り立つ。

$$V_{\Delta E_{\max}} = a \cdot \frac{V_E}{\sqrt{t_1 / \Delta t}} \tag{4}$$

式 (4) の右辺は $\overline{\Delta E}$ を、 ΔE_{max} が入力される半サイク ル応答時間∆tを用いて,継続時間中の等価な固有周期を (2Δt) と仮定したときの平均的な瞬間入力エネルギーと 定義したことを意味する。図-17には入力地震波のパ ワースペクトル密度関数を、図-18には各変位ピーク 値更新時点までの時間をtとし、それまでに入力された E_I と、当該半サイクル時間 Δt に入力された ΔE の関係を 式(4)に対応させて等価速度換算で示す。ここでは当該 半サイクル時間のΔEが過去のΔEを上回ったときのみプ ロットしている。また同図には、ΔEmaxと表-3に示し た有効継続時間 t₄に入力されたエネルギーとの関係も重 ねて示す。図-17を見ると、本検討で使用した4つの 入力波のパワースペクトル密度関数はよく似た性状を示 しており、図-18が入力地震波に依らずに高い相関を 示していることや、3.3 で述べた $\Delta E_{\text{max}}/\Delta t$ が入力波に 依らずほぼ同じ値になったのはこのためであると考えら れる。ただし本実験条件に限られた見解であるため、今 後は検討範囲を広げたより詳細な検討が必要である。

4. まとめ

せん断柱(RCS)と曲げ柱(RCM)からなる並列1自 由度系の擬似動的実験を実施し,エネルギー応答に着目 した検討を行った。

- 応答繰り返し数が比較的少ない範囲では、せん断降 伏以降の入力エネルギーに対する RCS の履歴吸収エ ネルギーの割合が高い結果となったが、応答繰り返 し数が増えるに従って、履歴ループのスリップ性状 により、その割合は減少する傾向が見られた。
- 2) 応答半サイクル間の瞬間入力エネルギーと応答変位 との間には高い相関が見られたが、片押し的な応答 が顕著な場合や、応答変位の更新量が小さい場合に は、これらの相関から外れる傾向が見られた。

図-18 ΔEとEIの関係

3) 本検討の範囲では半サイクル単位時間あたりの瞬間 入力エネルギー($\Delta E/\Delta t$)の最大値は地震波に依ら ずほぼ同じ値となり,継続時間を考慮して, $\Delta E \ge E_I$ との対応関係を示した。

謝辞

本論文で使用した模擬地震波の作成にあたり,防災科 学技術研究所 K-NET 観測記録を使用しました。また擬 似動的実験の遂行にあたり秋田工業高等専門学校 准教 授・寺本尚史先生の協力を頂きました。本研究の一部は, JSPS 科研費(25420586, 26420556)の助成を受けてい ます。ここに付記し謝意を表します。

参考文献

- 日本建築学会:既存中層鉄筋コンクリート造建物の 等価線形化法を用いた耐震性能評価法,2014年度日 本建築学会大会 PD 資料,2014.9
- 2) 菅野秀人,櫻井真人,藤井賢志,西田哲也:せん断柱 と曲げ柱からなる並列1自由度系モデルの擬似動的 実験,コンクリート工学年次論文集, Vol.37, No.2, pp.673-678, 2015.7
- 中村孝也,堀則男,井上範夫:瞬間入力エネル ギーによる地震動の破壊特性評価と応答変形の推 定,日本建築学会構造系論文集,No.513, pp.65-72, 1998.11
- 4) 柴田明徳:最新耐震構造解析,森北出版, pp.168-191, 1981.6