論文 モルタル充填式継手を同一断面に配置したRCはりの曲げ性状に関 する研究

安田 瑛紀*1・中村 拓郎*2・松本 智夫*3・二羽 淳一郎*4

要旨:本研究では、モルタル充填式継手を同一断面に配置した RC はりの曲げ性状を検討することを目的と して、5 体の RC 供試体の載荷実験を行った。その結果、いずれの供試体においても計算値以上の曲げ耐力を 有しており、継手位置によっては曲げ耐力が向上することを確認した。また、供試体内のひずみや変位の分 布は、継手の有無によらず同様の性状を示したが、ひび割れの発生箇所やひび割れ幅は、継手の存在によっ て大きく影響されることが明らかになった。

キーワード:モルタル充填式継手, RC はり, 集約配筋工法, 曲げ性状, 繰返し載荷, ひび割れ幅

1. はじめに

近年,施工の合理化や構造性能の向上を図るため,太 径鉄筋や高強度鉄筋の利用が拡大しており、これらに対 応できる鉄筋継手としてモルタル充填式継手の利用が増 加している。鉄筋先組工法やプレキャスト工法は、モル タル充填式継手の利点を活かした施工方法であるが、継 手が同一断面に配置されることとなる。特に、プレキャ スト部材においては部材端等の断面力の大きい位置に継 手が配置される場合が多い。しかしながら、土木学会の 「コンクリート標準示方書」いでは、「継手を同一断面に 集めないことを原則とする。」、「鉄筋の継手位置は、でき るだけ応力の大きい断面を避けることを原則とする。」と 定められており、このような継手配置を行う際には、そ の力学的性能を充分に把握する必要がある。著者らは, これまでモルタル充填式継手を有する RC はりのせん断 性状と合理的配筋方法について実験的に検討し、継手の 存在によってせん断耐力が損なわれないことを確認して きた²⁾。しかしながら,設計荷重下における曲げ挙動等 については、より実用的な検討が求められる。

本研究では、モルタル充填式継手を同一断面や応力の 大きい断面へ配置した場合の曲げ性状について検討する ため、5 体の RC はりの載荷実験を行った。載荷実験は、 鉄筋の許容応力度レベルでの繰返し載荷を導入し,常時 荷重と地震荷重が作用する際に,継手の存在が RC はり に与える影響を検証した。また,せん断補強鉄筋の配筋 には,著者らがこれまで検討してきた「集約配筋工法」 ²⁾を採用し,せん断補強鉄筋の合理的な配筋方法の適用 性も検討した。

2. 実験概要

2.1 実験ケースおよび供試体概要

表-1に実験ケースを,図-1に供試体概要を,表-2 に供試体の共通諸元を示す。供試体は,曲げ引張破壊先 行型となるよう設計したせん断スパン比 a/d=4.0,全長

え 「 天殿 / 八								
供試体	継手	載荷方法	継手位置					
			x (mm)					
No-Sleeve	なし	繰返し	-					
C-600	あり	繰返し	600					
C-1065	あり	繰返し	1065					
C-1300	あり	繰返し	1300					
M-1065	あり	単調	1065					

表-1 実験ケース

x:支点から継手中央までの距離

*1 東京工業大学大学院 理工学研究科土木工学専攻 (学生会員)

*2 東京工業大学大学院 理工学研究科土木工学専攻 助教 博士(工学) (正会員)

*3 日本スプライススリーブ(株) 技術本部 顧問 博士(工学) (正会員)

*4 東京工業大学大学院 理工学研究科土木工学専攻 教授 工博 (正会員)

井ノドマパンド	コンクリート	主鉄筋および圧縮鉄筋			せん断補強鉄筋			
	呼び強度	相枚な上び匹び汉	$p_{ m w}$	$f_{ m y}$	相枚お上711匹711次	$r_{ m w}$	$f_{ m wy}$	S
<i>u /u</i>	(N/mm ²)	が旧るより行い住	(%)	(N/mm ²)	が招望ない。10世	(%)	(mm ²)	(mm)
4.0	30	SD345 D19	1.43	398	SD345 D10	0.71	380	100

表-2 供試体の共通諸元

 p_{w} : 主鉄筋比, f_{y} : 主鉄筋の降伏強度, r_{w} : せん断補強鉄筋比, f_{wy} : せん断補強鉄筋の降伏強度, s: せん断補強鉄筋間隔(集約配筋部を除く)

120 変位 50mm 80kN を まで単調載荷 3サイクル 80 (kN) 40kN を 荷重 3 サイクル 40 0 2 5 3 4 6 サイクル

3m, 断面幅 200mm, 高さ 350mm の RC はりとした。な お、供試体は既報のせん断破壊型の実験 2)を基準に断面 設計を行った。実験パラメータは、1)継手位置、2)継手 の有無および 3) 載荷方法である。継手を配置しない No-Sleeve を基準に、継手配置の異なる合計 5 体の供試 体を作製した。C-1065 ならびに M-1065 では、継手の端 部が載荷点直下と一致するように継手を配置した。C-600 および C-1300 では、継手の中央位置がそれぞれせん断 スパン中央および等曲げ区間中央と一致するように継手 を配置した。C-600, C-1065, C-1300 および M-1065 では, 継手上のせん断補強鉄筋を継手端に移動させ集約するこ とで集約配筋を行った。静的単調載荷とした M-1065 を 除く他の供試体では、繰返し載荷を行った。図-2 に繰 返し載荷の履歴を示す。載荷履歴は、日本道路協会「道 路橋示方書・同解説」3が定める鉄筋の許容応力度を参考 に、2段階の荷重レベルを設定した。等曲げ区間の主鉄 筋の応力度が 100N/mm2 に達する荷重として 40kN を, 200N/mm2 に達する荷重として 80kN を, それぞれ事前 計算により設定した。継手の有無や位置にかかわらず, 載荷履歴を与える供試体では同一の載荷履歴を導入し, 合計6サイクルの繰返し載荷を実施した後,最大荷重ま での静的載荷を行った。

2.2 使用材料

コンクリートは,呼び強度 30N/mm²,粗骨材最大寸法 20mm の市販のレディーミクストコンクリートを使用し,

図-3 継手部の詳細

表-3 スリーブ諸元								
規格	降伏強度	外径 D	内径 d	長さ L	挿入長 l			
	(N/mm ²)	(mm)	(mm)	(mm)	(mm)			
FCD700	540	40	25	270	130			

図-4 継手試験(高応力繰返し試験)結果

5 体の供試体を同時に打設した。主鉄筋と圧縮鉄筋は, 異形鉄筋 D19 (SD345) を3本ずつ配筋した。 主鉄筋は 供試体端部で厚さ 9mm の鋼板に溶接することによって 定着を確保した。せん断補強鉄筋は, 異形鉄筋 D10 (SD345)を使用し, せん断補強鉄筋間隔 *s*=100mm で配 筋した。スリーブを配置した供試体では, スリーブ上の せん断補強鉄筋をスリーブの両端にまとめて配筋する集 約配筋工法²⁾を採用した。

2.3 モルタル充填式継手および継手試験

継手部の詳細を図-3 に,継手に使用したスリーブ諸 元を表-3 に示す。スリーブの材質には FCD700 を使用 し,グラウト材には圧縮強度 70N/mm²の無収縮性モルタ ルを使用した。RC はり供試体の載荷実験に際して,継手 単体の性能を判定するために継手試験を行った。継手試 験は,RC はり供試体に使用された継手と同様の手順で

供試体名	コンクリート 強度 (N/mm ²)	 曲げ耐力				
		計算值 Pu.cal	実験值 Pu.exp	$P_{u.exp}$		
		(kN)	(kN)	/ P _{u.cal}		
No-Sleeve			170.0	1.08		
C-600			174.7	1.11		
C-1065	33.2	157.9	184.4	1.17		
C-1300			183.1	1.16		
M-1065			180.4	1.14		

表-4 載荷実験結果

(a) 繰返し載荷範囲(0~80kN)

(b) 載荷開始から載荷終了まで

図-5 荷重-変位関係

作製された3本の供試体を用いた。継手試験は,母材鉄筋の規格降伏強度の95%まで引張載荷し,2%まで除荷することを30回繰返したのち,破断まで引張載荷する高応力繰返し試験4%を行った。継手試験の結果を図-4に示す。継手試験の結果,本実験に使用した継手は土木学会「鉄筋定着・継手指針」4」の継手性能判定基準のA級を満足していることを確認した。

2.4 載荷実験方法

載荷実験は、油圧式 1000kN 万能試験機を用いて 2 点 載荷で行った。載荷点は、石膏を用いて水平にした上で 幅 64mm の鋼板を設置した。支点は、回転支承の上に幅 72mm の鋼板を設置し、鋼板と供試体との間にグリスを 2 枚のテフロンシートで挟んだ減摩パッドを使用するこ とで、供試体の回転と水平変位の拘束を防いだ。

鉄筋に貼付したひずみゲージ位置と、変位計の設置位 置を図-1 内にそれぞれ赤丸、青矢印のマークで示す。 主鉄筋のひずみと RC はりの変位は、共に支点から載荷 点方向に 200mm 間隔の位置を基準として計測した。継 手を有する供試体では、スリーブの両端から 30mm の位 置を計測点に加えた。主鉄筋のひずみゲージは、3 本あ るうちの中央の鉄筋に貼付した。また、せん断スパン内 の一部のせん断補強鉄筋にもひずみゲージを貼付した。

載荷実験中は、荷重が 10kN 増加する毎、または変位 が 2.5mm 増加する毎に載荷を一時停止し、ひび割れ状況 を観察した。また、観察と同時に、デジタル式ひび割れ 幅測定器(ひび割れ幅検出精度:±0.03mm以下,ひび割 れ幅検出範囲:0.05~2.0mm)を用いて、与えられた荷重 における幅が最大となるひび割れ(以降、「最大ひび割れ」 と称する)の位置と幅を記録した。なお、ひび割れ幅は、 供試体の底面において測定した。

3. 実験結果

3.1 荷重-変位関係

表-4に曲げ耐力の計算値と載荷実験の結果を,図-5 に全供試体の荷重-変位関係を示す。表-4 中の計算値 Pucalは、「コンクリート標準示方書」¹⁾に従って求め、計 算においてコンクリートの終局圧縮ひずみは &cu=0.0035 と仮定した。また、図-5の荷重-変位関係の 変位はスパン中央の変位である。

いずれの供試体においても、主鉄筋降伏後は荷重の増 加が横ばいとなり明確な荷重低下は確認されなかったた め、スパン中央の変位が 50mm に達した段階で載荷を終 了とした。本研究では、このときの荷重を曲げ耐力の実 験値 *Puexp* とした。また、いずれの供試体においても、せ ん断補強鉄筋の降伏は生じなかった。

載荷実験の結果,全ての供試体で計算値以上の曲げ耐 力を保有していることを確認した。継手の有無による耐 力差を比較すると,継手のない No-Sleeve と比較して,

供試体	第1サイクル		第3サイクル		第4サイクル		第6サイクル	
	40kN 時	除荷時	40kN 時	除荷時	80kN 時	除荷時	80kN 時	除荷時
	変位	残留変位	変位	残留変位	変位	残留変位	変位	残留変位
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
No-Sleeve	1.02	0.22	1.13	0.25	3.38	0.88	3.49	0.92
C-600	1.33	0.44	1.45	0.50	3.65	1.05	3.98	1.13
C-1065	1.41	0.59	1.51	0.67	3.48	1.20	3.64	1.21
C-1300	1.22	0.37	1.30	0.40	3.34	0.88	3.53	0.92
M-1065*	1.05		_	_	3 21	_	_	
(参考)	1.05	_	-	-	5.21			-

表-5 繰返し載荷における各サイクルの変位

*M-1065において,静的単調載荷における 40kN と 80kN 荷重時の変位を,便宜上第1サイクルと第4サイクルの値として載せた。

図-8 ひずみ・変位分布の比較(C-1065)

継手を有する他4体の供試体の方が高い曲げ耐力を有し ていた。さらに、継手位置による耐力差を比較すると、 せん断スパン中央に継手を配置した C-600 に比べて、曲 げモーメントの大きい位置に継手を配置した C-1065, C-1300 および M-1065 の方が、若干ではあるが高い曲げ耐 力を有していることを確認した。これは、母材鉄筋より も断面積の大きいスリーブを使用することにより、継手 部の曲げ剛性が増加していることに起因すると考えられ る。特に、等曲げ区間の中央に継手を配置した C-1300 で は、曲げ破壊の発生が等曲げ区間の断面から継手端部(支 点から 1165mm の断面)の断面に移動したため、等曲げ 区間で曲げ破壊した他の供試体よりも若干ではあるが高 い曲げ耐力を示したものと考えられる。

繰返し載荷部分の荷重-変位関係を図-5(a)に示す。

参考として,単調載荷とした M-1065 も付記した。また, 各サイクルにおけるピーク荷重(40kN または 80kN)時 の変位と除荷時の残留変位を表-5にまとめる。繰返し によってピーク荷重時の変位または除荷時の残留変位は 増加しているが、その増加量は 0.1~0.2mm 程度でわず かなものである。各供試体における荷重-変位関係と各 サイクルの変位の比較から、繰返し載荷時には継手のあ る供試体の方が継手のない No-Sleeve に比べて剛性が若 干低下しているように見受けられる。これは継手による 影響と考えられるものの、供試体間の変位の絶対量の差 は 0.5mm を超えない程度のわずかなものである。そのた め、鉄筋の許容応力度レベルでの繰返し載荷を導入して も、継手によって荷重-変位性状に大きな影響は無かっ たといえる。また、単調載荷の M-1065 と比較しても、 繰返し載荷を導入した供試体で荷重-変位関係の大きな 違いは認められなかった。

以上の結果より、「道路橋示方書」³による鉄筋の許容 応力度レベルに相当する繰返し載荷を含めて、A級判定 のモルタル充填式継手を同一断面に配置した供試体の荷 重-変位関係は、継手のない供試体と同等程度のもので あることが確認された。一方で、高応力度や大変形領域 での繰返し載荷を受ける場合、あるいは配筋諸元の異な る場合については、さらなる検討が求められる。

3.2 ひずみ・変位の分布

130kN 荷重時における, 全供試体の左スパン内のひず みと変位の分布を、それぞれ図-6と図-7に示す。い ずれの分布性状も,各供試体で同様の傾向を示した。典 型的な分布性状として、C-1065のひずみ・変位分布の比 較を図-8に示す。なお、スリーブ区間は図中の黄色で 示す範囲である。継手を有する供試体では, スリーブの 両端から 30mm 位置を計測点に加えたが、スリーブ区間 をはさんでひずみ・変位ともにほぼ線形な挙動になって いた。モルタル充填式継手のスリーブは, 異形鉄筋と異 なり比較的滑らかな表面性状を有しているために,継手 区間全体での付着性能の低下が懸念される。しかしなが ら, 鋳鉄製のスリーブが表面に微細な凹凸を有している ことに加えて、母材鉄筋よりも大きな表面積を有してい るために,継手区間全体での付着性能は確保されていた と考えられる。その結果,継手区間を含めて,スパン内 全域でひずみや変位の分布性状がほぼ直線的になった と推察される。以上より, モルタル充填式継手を同一断 面に集中して配置した場合においても、局所的な変位や ひずみの変化は発生しないことが実験でも確認された。

3.3 ひび割れ性状

全供試体の 50mm 変位時におけるひび割れ性状を図 -9に示す。図中において、デジタル式ひび割れ幅測定 器によって判定した最大ひび割れを赤線で、継手位置を 緑枠で、コンクリートの圧壊部を赤斜線で示している。

継手を配置していない No-Sleeve では、最大ひび割れ は常に等曲げ区間中央のひび割れであった。継手を配置 した供試体においては、いずれの供試体でも継手端部近 傍における曲げひび割れの発生を確認した。特に、曲げ モーメントの大きい位置に継手を配置した C-1065, C-1300 および M-1065 では、最大ひび割れは載荷終了時ま で一貫して継手端部近傍のひび割れであった。これは, 曲げモーメントによって継手に引張力が作用した際に, スリーブ端のコンクリートに発生する支圧力に起因する ものと考えられる。その結果、継手端部からコンクリー トが押し出されるようなひび割れが発生したものと推測 される。等曲げ区間直下に継手端部が一致するように配 置した C-1065 および M-1065 では、等曲げ区間でのコン クリートの圧壊が他の供試体よりも激しく生じていた。 これは、等曲げ区間が、継手の集中配置された剛性の大 きい断面にはさまれることによって、この区間への損傷 が集中したことによると考えられる。

主鉄筋降伏前後のひび割れ幅を比較するため, No-Sleeve, C-600 および C-1065 における, 第 6 サイクル 80kN 時と 150kN 時のひび割れ幅測定結果を表-6 にま とめた。また, コンクリート標準示方書における曲げひ び割れ幅算定式(1)^Dによる計算値と比較した。

(赤線:最大ひび割れ,緑枠:継手位置,赤斜線:圧壊部)
 図-9 50mm 変位時のひび割れ性状

$$w = 1.1k_1k_2k_3(4c + 0.7(c_s - \varphi))\left(\frac{\sigma_{se}}{F_s} + \varepsilon_{csd}'\right) \quad (1)$$

ここで、 k_1 : 鋼材の表面形状に関する係数、 k_2 : コン クリートの品質に関する係数、 k_3 : 主鉄筋の段数に関す る係数、w: ひび割れ幅(mm)、c: コンクリートかぶり (mm)、c: 鋼材中心間距離(mm)、 φ : 鋼材径(mm)、 σ_{se} : 鉄筋応力度の増加量(N/mm²)、 E_s : 鋼材のヤング係数 (N/mm²)、 ε'_{csd} :収縮・クリープの指標である。材齢が短 いことから収縮やクリープの影響は無視できるとし、 $\varepsilon'_{csd}=0$ とした。また、鋼材径 φ には母材鉄筋の径を、コ ンクリートかぶり cには母材鉄筋からのかぶりの値をそ れぞれ用いて、継手の有無は無視した。

C-600 においては、最大荷重時には最大ひび割れは等 曲げ区間のひび割れであるが、80kN時点では継手端部の ものが最大ひび割れとなった。図-9(b)にこのひび割れ を青線で示す。このことより、荷重レベルによっては断 面力の大きさよりも、継手の存在がひび割れ幅に与える 影響が卓越すると考えられる。この現象は、計算値と測 定値の比較より明確にとらえられる。80kN時点において、 計算値と測定値の比は概ね 1.4 以下の値にとどまってい

		第6サイクル 80kN 時のひび割れ幅			150kN 時のひび割れ幅		
供試体	ひび割れ位置	計算値	測定値	測定値/	計算値	測定値	測定値/
		(mm)	(mm)	計算値	(mm)	(mm)	計算値
No-Sleeve	載荷点直下 (等曲げ区間)	0.18	0.25	1.39	0.33	0.35	1.06
C-1065	載荷点側継手端部 (等曲げ区間)	0.18	0.25	1.29	0.33	0.35	1.06
C 600	載荷点直下 (等曲げ区間)	0.18	0.20	1.11	0.33	0.35	1.06
C-000	載荷点側継手端部 (せん断スパン内)	0.09	0.25	2.78	0.17	0.25	1.47

表-6 ひび割れ幅の比較

るが、上述のひび割れにおいてのみ、計算値の倍以上の ひび割れ幅が測定された。このひび割れは、以降の荷重 増加による開口は確認されず、150kN に達しても同じひ び割れ幅に留まり、結果として計算値との差は減少した。 また、150kN 時点では、他のひび割れにおいて測定値は 概ね計算値と一致しており、継手がある場合でも既往の 算定式 ¹¹を用いて曲げひび割れ幅の予測は可能であると 考えられる。このとき、計算には母材鉄筋を基準とした 値を用いて、継手の影響を無視しても曲げひび割れ幅を 概ね精度よく評価できると考えられる。

3.4 集約配筋の適用性の確認

継手を配置した供試体においては、スリーブ上のせん 断補強鉄筋をスリーブ両端に集約する集約配筋を行って いる。このため、スリーブ長さの 270mm に相当する区間 では、せん断補強鉄筋が配筋されない状態となるが、せ ん断補強鉄筋の降伏は認められず、せん断破壊は生じな かった。図-9のひび割れ性状に注目すると、せん断ス パン内に継手を配置した C600, C-1065 および M-1065 に おいて、継手間にもぐりこむような斜めひび割れが発生 していた。図-9にこのひび割れを黄線で示す。これは、 集約区間で局所的にせん断補強鉄筋間隔が広がったこと に起因すると考えられる。しかしながら、この区間のコ ンクリートが集約したせん断補強鉄筋と剛性の高いスリ ーブに囲まれていることによって拘束され、せん断破壊 には至らなかったものと推察される。既往の実験 2)にお いても, 載荷点近傍に継手を配置した供試体で同様のひ び割れを確認したが、その後発生した継手の無い区間に おける斜めひび割れの開口によりせん断破壊に至った。 このことから、剛性の高いモルタル充填式継手を配置す ることで、集約配筋に起因するせん断破壊を防止するこ とができると考えられる。以上より、少なくとも本実験 の配筋諸元の範囲では、せん断補強鉄筋の集約配筋に起 因するせん断破壊の発生は確認されなかった。

4. まとめ

モルタル充填式継手を同一断面に配置した RC 供試体 の載荷実験により,以下の知見を得た。

- (1) A 級判定のモルタル充填式継手が RC はりの曲げ性 状に及ぼす影響は小さく,曲げ耐力や剛性は継手の ない RC はりと同等程度かそれ以上であった。本実 験の配筋諸元の範囲内では,せん断補強鉄筋の集約 配筋を行っても,破壊形態がせん断破壊に移行する ことはなかった。
- (2) モルタル充填式継手の同一断面への配置は、RC は りのひずみ・変位の分布性状にほとんど影響を与え ないことを確認した。また、本実験の範囲内では、 継手部分での付着伝達性能も良好であると推測さ れた。
- (3) コンクリートの支圧抵抗により,継手端部でひび割れが発生する。このとき荷重レベルによっては、断面力よりも継手の影響が卓越して、最大ひび割れは継手端部近傍に発生する可能性が示唆された。
- (4) 荷重レベルや配筋の状態によって継手の影響が顕 著となる場合を除けば、既往の算定式を用いて、継 手を有するRCはりの曲げひび割れ幅を概ね予測す ることができた。

参考文献

- 1) 土木学会:コンクリート標準示方書【設計編】, 2012
- 2) 安田瑛紀,松本浩嗣,松本智夫,二羽淳一郎:モル タル充填式継手と集約配筋が RC はりのせん断性状 に与える影響,コンクリート工学年次論文集,Vol.37, No.2, pp.517-522, 2015.7
- 3) 日本道路協会:道路橋示方書・同解説(I共通編・ Ⅲコンクリート橋編), pp.131~133, 2012
- 4) 土木学会:コンクリートライブラリー128 鉄筋定着・継手指針 [2007 年版], pp.34~54, 2007