# 論文 耐久性向上を目的としたコンクリート内部へのシランの高圧注入工 法の開発

尾形 雅人<sup>\*1</sup>·Sanjay PAREEK<sup>\*2</sup>

要旨:本研究では,ひび割れの自己修復機能を有するコンクリートの耐久性向上を目的とし,ひび割れ発生前 において,コンクリート内部に設けたネットワークにシラン系含浸材を高圧で注入し,コンクリート内部に浸 透させた後,含浸深さ試験を行った。その結果,ネットワーク周辺におけるシランの浸透域が形成されたこと を確認した。また,シランの浸透深さは注入圧力及び注入時間の増大に伴い,増加傾向を示した。さらに,シラ ンの浸透域において累積細孔量が減少傾向を示し,シランによる撥水層の形成に伴い吸水性能が抑制された。 キーワード:自己修復,ネットワーク,シラン,空隙率,吸水試験

#### 1. はじめに

近年では地球環境問題を背景に、スクラップアンドビ ルドによらない持続可能な社会の構築が求められている。 そのため、鉄筋コンクリート(以下:RC)構造物において は、ひび割れの発生に伴い劣化因子の侵入による耐久性 の低下が助長されることから、性能低下に応じたメンテ ナンス方法が確立されつつある。しかし、RC構造物はあ らゆる用途で使用されており、大規模構造物における補 修・補強作業は、時間的・人的・経済的なコストが莫大な ものになる。そこで、ひび割れの自己修復機能をRC構造 物に付与することで、効率的にRC構造物を長寿命化さ せることが期待できる<sup>1)</sup>。

研究事例として、繊維補強セメント系複合材料を用 いることで炭酸カルシウム結晶の一形態であるカルサイ トによる自己治癒を促進させる方法<sup>2)</sup>や強アルカリ環境 下でも生存することができるバクテリアをコンクリート に混ぜることで、ひび割れが発生した際にバクテリアが 炭酸カルシウムを析出し、ひび割れを修復させる方法<sup>3)</sup> が挙げられる。

筆者らは、RC構造物における梁部材の下部に補修剤の 充填孔(以下:ネットワーク)を設けることで、ひび割れが 発生した際に補修剤が自動的にひび割れの修復を行う自 己修復システムの開発を行ってきた<sup>4)</sup>。既往の研究では、 ひび割れの自己修復を行ったモルタルにおいて、ひび割 れからの CO<sub>2</sub> 及び CI の侵入抑制効果を確認している<sup>5)</sup>。 しかし、劣化因子はコンクリートの表層部から浸透する ことで鉄筋腐食を誘発させ、腐食による膨張圧によりひ び割れを発生させる。そこで、ひび割れ発生前において、 ネットワーク内部に表面保護工で使用されるシラン系含 浸材(以下、シラン)を注入し、ネットワーク周辺に劣化因 子に対する保護層を形成させた供試体において、CI の浸 透抑制効果の検討を行った。その結果、ひび割れ発生前に おいて、ネットワーク周辺へのシランの浸透により、表層 部からの Crの浸透が抑制される結果を得た<sup>の</sup>。しかし、 既往の研究におけるシランの浸透深さはネットワークか ら数 mm 程度であることから、劣化因子に対する抑制効 果は十分であるとは言えない。そこで本研究では、シラン の浸透域の拡大のため、高圧ポンプを用いたシランのネ ットワーク内部への高圧注入による耐久性向上に関する 検討を行った。なお、Fig.1 にネットワーク内部へのシラ ンの高圧注入による、コンクリート内部へのシラン浸透 の概要を示す。



Fig.1 Outline of High-Pressure Silane Injection.

# 2. 実験概要

# 2.1 実験計画

本研究では,モルタル及びコンクリート供試体を用い

\*1 日本大学大学院 工学研究科建築学専攻 (正会員)\*2 日本大学 工学部建築学科 准教授 博士(工学) (正会員)

てネットワーク内部へのシランの高圧注入を行い,シラ ンの含浸深さ試験の結果から,注入圧力及び注入時間が 及ぼす浸透性状への影響を検討した。また,シランの高圧 注入による吸水抑制効果を確認するため,シランの高圧 注入後における供試体を用い,吸水試験を行った。更に, 高圧注入したシランが及ぼす細孔内部への影響を確認す るため,シランの浸透域及び非浸透域における細孔分布 径の測定を行った。

### 2.2 使用材料

セメントには、普通ポルトランドセメントを用いた。モ ルタル供試体は、細骨材に福島県須賀川産砕砂(寸法: 5mm 以下)を、混和剤に、ポリカルボン酸エーテル系の高 性能 AE 減水剤を使用した。コンクリート供試体は、細骨 材に、福島県白河産砕砂(S①、寸法:5mm 以下)及び福島 県須賀川産砕砂(S②、寸法:5mm 以下)及び、粗骨材とし て、福島県いわき市好間町産砕石(G、寸法:20~5mm)を 使用した。また、混和剤としてリグニンスルホン酸化合物 とポリカルボン酸エーテルの複合体により構成された高 性能 AE 減水剤を使用した。なお、ネットワーク内部に注 入した含浸材は市販されているシラン・シロキサン系含 浸材を使用した。Table 1 にシランの性質を示す。

#### 2.3 供試体概要

モルタル供試体の配合は、セメント:細骨材=1:3(質 量比) で混合し, フロー値が 170±5mm となるように, 水セ メント比を 60%とした。また、混和剤はセメント質量に 対して 1%混入した。練混ぜ後,60×60×220mm に成形 し,2 日(以下,日を d とする)湿空[20℃,90%(RH)]養 生,5d 水中(20℃)養生,21d 乾燥「20℃,60%(RH)〕養生 を行い,材齢 28d とした。コンクリート供試体の練混ぜ は Table 2 に示す調合で行い, スランプ値は 17.5cm, 空気 量が 4.6% であった。練混ぜ後, 寸法 100×100×400mm に 成形し、モルタル供試体と同様の方法で養生を行った。な お,養生後においてコンクリートカッターにより 2 等分 した供試体を試験に使用した。また,モルタル及びコンク リート供試体の中央には、それぞれφ6mm 及びφ10mm のネットワークを設けた。なお、ネットワークは、打ち込 み時に,予めグリスを塗布した鉄筋を埋め込み,湿空養生 後に引き抜いて作製した。

# 2.4 実験方法

#### 2.4.1 シランの注入及び含浸深さ試験

養生終了後, ネットワーク内部にシランの高圧注入を 行った。高圧注入は, **Fig.3**に示す様に, 高圧ポンプを用い, ネットワーク内部には常に所定の圧力でシランが注入さ れる状態とした。注入条件を **Table 3**に示す。シランの 高圧注入後, 1d 乾燥(60℃)養生及び2d 乾燥(40℃)養生を 行った。その後, 供試体を割裂し, 割裂面における含浸深 さ試験を行った。試験は JSCE-K 571-2010(表面含浸材の

### Table 1 Properties of Silane.

| Main Component  | Active Component (%) | Viscosity<br>(Pa • s/25°C) |
|-----------------|----------------------|----------------------------|
| Silane-Siloxane | 90≦                  | 500                        |

Table 2 Mix Proportions of Concrete.

| W/C  | Unit Content (kg/m <sup>3</sup> ) |     |            |            |     |       |
|------|-----------------------------------|-----|------------|------------|-----|-------|
| (%)  | С                                 | W   | <b>S</b> ① | <b>S</b> ② | G   | AE    |
| 57.9 | 318                               | 184 | 433        | 422        | 936 | 3.180 |

AE: Air Entraining and Water Reducing Agent



Fig.2 Details of Concrete Specimen.



Fig.3 Outline of Silane Injection and Test Conditions.

| Table 3 | <b>Parameters</b> | of High- | <b>Pressure</b> | Silane          | Injection. |
|---------|-------------------|----------|-----------------|-----------------|------------|
|         |                   | V        |                 | ~ ~ ~ ~ ~ ~ ~ ~ |            |

| Type of  | Injection Pressure | Injection Time       |  |
|----------|--------------------|----------------------|--|
| Specimen | (MPa)              | (min)                |  |
| Mortar   | 2.5, 5.0, 7.5      | 15, 30, 60, 120, 180 |  |
| Concrete | 5, 10              | 15, 60, 120, 180     |  |





試験方法)に従い,割裂面を上水道水に 1 分間浸漬し,割 裂した面の撥水している部分の厚さを含浸深さとして 測定した。測定箇所は Fig.4 に示すように,ネットワーク からの含浸深さを 4 方向についてノギスで 0.1mm の単 位で測定を行った。さらに,割裂面における撥水層の面 積及び全断面積を測定し,浸透面積率を算出した。また, シランの注入前及び注入後における供試体の質量を測 定し,注入量を算出した。

# 2.4.2 細孔径分布の測定

シランを高圧注入した供試体において,水銀圧入式ポ ロシメータを用い,細孔径分布の測定を行った。試料 は,Fig.4 に示すように,ネットワーク周辺におけるシラ ンの浸透域及び未浸透域の 2 箇所をカッターで切り出 し,5mm 角程度に調整した後,105℃の乾燥機で 1d 乾燥 させたものを用いた。なお,コンクリート供試体は,粗骨 材を除いたモルタル部分を試料として,測定を行った。

# 2.4.3 吸水率の測定

シランを高圧注入した供試体を水中(20℃)に浸漬し, 浸漬前後の質量を測定した。また,吸水により増加した質 量を浸漬前の質量で除した値を吸水率として算出した。 なお,質量の測定は,浸漬開始から,1,3,6,12h及び,1, 2,3,5,7,10,14,28dとした。

# 3 実験結果及び考察

### 3.1 注入量と注入時間の関係

Fig.5 及び Fig.6 に, モルタル及びコンクリート供試体 における注入時間に対する注入量と浸透深さの関係を示 す。モルタル供試体は, いずれの圧力においても 120min







Fig.6 Impregnation Amount and Penetration Depth vs. Injection Time of High-Pressure Silane Injection Tests for Concrete Specimens.



Note\*; Impregnation Depth (mm)

Photo 1 View of Water Repellency of Mortar and Concrete Specimens by High-Pressure Silane Injection.

まで,注入時間の増加に伴い,注入量も増加傾向を示した。 また,注入圧力が高いほど,注入量も増加傾向を示した。 S7.5 は注入時間が 15min から 30min の間に, 急激に注入 量が増加し、その後は、緩やかな増加傾向を示した。一方 S2.5 及び S5.0 は,注入時間 120min までは注入量が増加 傾向を示したが,180min において,注入量の減少が確認 された。コンクリート供試体に関しても,モルタル供試体 と同様に,注入時間の増加に伴い,注入量は増加傾向を示 した。また,注入時間 120min までは, CS10 が高い注入量 を示したことから,高い圧力を加えることで時間当たり の注入量は増加傾向を示す。さらに,浸透深さについ て,CS5 及び CS10 ともに,注入時間 120min において 40mm 以上の浸透深さを示した。このことから,当自己修 復システムの実構造物への適用に際し,かぶり厚 50mm を仮定し、ネットワークを引張側鉄筋の下部に設けた場 合、シランの浸透域が引張側鉄筋まで到達すると考えら れる。これにより,鉄筋周辺にシランによる H2O などに 対する保護層の形成が期待できる。

### 3.2 浸透面積と注入時間の関係

Photo 1 にシランを高圧注入した供試体における撥水 試験後の供試体の様子を, Fig.7 及び Fig.8 には, それぞれ モルタル及びコンクリート供試体におけるシランの浸透 面積率と注入時間の関係を示す。モルタル供試体におい て, S7.5 は注入初期において, 比較的に高い浸透面積率を 示し,その後は緩やかな増加傾向を示した。一方, S2.5 及 び S5.0 は注入量と同様に 120min まで浸透面積率が増加 傾向にあったが、180minにおいて、減少を示した。以上の 傾向は,注入量と時間の関係に類似していることから,注 入量を増加させることにより,浸透深さも同様に増加さ せることが可能であると言える。コンクリート供試体に ついて,注入初期においては,CS10の方が高い浸透面積 率を示したが、120min において CS5 と同等の浸透面積率 となり,その後は CS5 及び CS10 ともに緩やかな増加傾 向を示した。120min までの注入に比べて 180min 注入し た供試体の浸透面積率の増加が小さくなった理由とし て、Photo 1 に示すように、シランの浸透域が断面全体に 及んだことに起因する。

以上の結果から、ネットワーク内部に加える圧力を高 くすることにより、時間当たりのシランの浸透面積を増 加させることが可能である。また、モルタル及びコンクリ ート供試体ともに、浸透面積率と注入時間の関係は、注入 量と注入時間の関係に類似していることが分かる。

# 3.3 浸透深さと注入量の関係

Fig.9 及び Fig.10 にモルタル及びコンクリート供試体 における浸透面積率と注入量の関係を示す。モルタル及 びコンクリート供試体ともに、浸透面積率と注入量は比 例関係にあり、高い相関性が確認された。このことから、



Fig.7 Penetration Area Rate vs. Injection Time of High-Pressure Silane Injection Tests for Mortar Specimens.



Fig.8 Penetration Area Rate vs. Injection Time of High-Pressure Silane Injection Tests for Concrete Specimens.



Fig.9 Penetration Area Rate vs. Impregnation Amount of High-Pressure Silane Injection Tests for Mortar Specimens.



Fig.10 Penetration Area Rate vs. Impregnation Amount of High-Pressure Silane Injection Tests for Concrete Specimens.

浸透性状に影響を与えると考えられる細孔量やそれに影響を与える水セメント比等をパラメータとした実験デー タを積み重ねることで,注入量から浸透深さを推定する ことが可能であると考えられる。

# 3.4 シランの浸透が累積細孔量に及ぼす影響

Fig.11 及び Fig.12 に, モルタル及びコンクリート供試 体におけるシランの浸透域と非浸透域における累積細孔 量及び空隙率と細孔径の関係を示す。Fig.11 に示す 7.5MPa の圧力で 15min シランの注入を行ったモルタル 供試体は,非浸透域における累積細孔量が 88mm<sup>3</sup>/g 程度 であるのに対し,浸透域においては 62mm<sup>3</sup>/g程度となり, シランが浸透した箇所では,累積細孔量が小さい値を示 した。大塚ら<sup>7)</sup>によると,含浸させたシランは,コンクリ ートの細孔内部表面に存在するアルカリ性の水分により 加水分解し,細孔内部表面に固定化される。また,その上 部にシランが積層し、シロキサン結合(≡Si-O-Si=)の網目 構造が生成される。そのため、コンクリート細孔内部にお いてシラン化合物を生成し、固定化されたことが考えら れる。これに伴い,空隙率は非浸透域では細孔径 200nm 程度の細孔が多くを占めているのに対し,浸透域におい ては 90 nm 程度の細孔が増加し,非浸透域における細孔 量は比較的小さな細孔の占める割合が増加傾向を示した。 また、10MPa の圧力で 15min シランの注入を行ったコン クリート供試体においても同様に,浸透域における累積 細孔量が減少を示し,空隙率は直径 200nm から 50nm の 空隙の割合がわずかに増加を示した。

#### 3.5 吸水試験における吸水率の推移

Fig.13 に吸水試験における吸水率の推移を示す。全ての供試体において,吸水開始から ld の間に高い吸水性を示し,その後は,緩やかな増加傾向を示した。また,シランを高圧注入した供試体は,いずれも Plain より吸水率を抑制する結果となったことから,ネットワーク周辺に浸透したシランによる吸水抑制効果によるものだと推察される。CS5 において,120min 及び 180min の注入を行った供試体は,同様の吸水率を示したが,おおよそ,注入時間の長い供試体ほど,吸水率が抑制された。また,CS10 については CS5 よりも注入圧力が高く,シランの浸透域が広範囲であることから,より高い吸水抑制効果を示した。

# 4. 結論

実験を通して,以下の項目を確認した。

- ネットワーク内部へシランを高圧注入することで、 ネットワーク周辺にシランによる劣化因子に対す る保護層が形成され、H2Oの浸透が抑制される。
- シランの浸透深さは注入圧力が高く,注入時間が長いほど増加傾向を示す。
- 3) シランをネットワーク内に高圧注入することで、シ

ランの浸透域における累積細孔量は,非浸透域に比 べて減少傾向を示す。



Fig.11 Cumulative Pore Volume and Relative Pore Volume vs. Pore Diameter of High-Pressure Silane Injected Mortar Specimens.



Fig.12 Cumulative Pore Volume and Relative Pore Volume vs. Pore Diameter of High-Pressure Silane Injected Concrete Specimens.



Fig.13 Water Absorption Rate vs. Water Absorption Time Period of High-Pressure Silane Injected Concrete Specimens.

# 参考文献

- 日本コンクリート工学 セメント系材料の自己治癒 技術の体系化研究専門委員会編:セメント系材料の 自己治癒に関するシンポジウム、日本コンクリー ト工学,2011.6
- 2) 山田 洵, 西脇 智哉, 三橋 博三, 菊田 貴恒: PVA 混和剤およびフライアッシュが FRCC のひび割れ 自己治癒現象に及ぼす影響に関する研究, コンク リート工学年次論文集 Vol.35, No.1, pp.1381-1386 2013.7
- Virginie Wiktor, Henk M, Jonkers, Quantification of crack-healing in novel bacteria-based self-healing concrete, Cement & Concrete Composites, Vol.33, pp.763-770, 2011.8
- 大平 旭洋,三浦 裕騎, Sanjay PAREEK:ネットワー ク及び補修剤を用いた自己修復システムによる耐 久性向上に関する実験的検討,コンクリート工学 年次論文集, Vol. 35, No.1, pp.1399-1404, 2013.7

- 尾形 雅人, Sanjay PAREEK:ネットワーク及び補修 剤を用いた自己修復システムの防錆性向上に関す る検討,コンクリート工学年次論文集 Vol.36, No.1, pp.1654-1659, 2014.7
- 6) 尾形 雅人, Sanjay PAREEK:自己修復システムを付与したモルタルの鉄筋腐食に対する抵抗性の検討, コンクリート工学年次論文集 Vol.37, No.1, pp.1315-1320, 2015.7
- 7) 大塚 秀三,八木 修,中田 善久,荒巻 卓見:シランとシラン・シロキサン系表面塗布材の併用による コンクリートの表面保護効果に関する研究,日本 建築学会技術報告集 Vol.18, No.38, pp.15-19, 2012.2