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ABSTRACT 
The collapse of Tsyuagawa bridge damaged by Tohoku Tsunami is numerically investigated using the 
Applied element Method, due to its advantages of simulating structural progressive collapse. The 
analysis was proven to simulate the bridge collapse. It showed that the bridge collapsed at a water 
speed of 6.6 m/sec initiated by flexural failure of its piers. Study of bridge strengthening showed that 
the collapse water speed could be increased by 22% and 29% compared to Tohoku tsunami if the 
piers are strengthened by a 100-mm RC jacket and 20-mm thick steel jacket, respectively. 
Keywords: Tohoku tsunami; progressive collapse; applied element method 

 
1. INTRODUCTION 

 

On March 11th, 2011, the Tohoku tsunami, with 
10m-high waves swept over the east coast of Japan. 
The Japanese National Police Agency confirmed 
15,884 deaths, 6,150 injured, and 2,640 people missing, 
as well as 126,631 buildings totally collapsed, with a 
further 272,653 buildings 'half collapsed', and 743,492 
buildings partially damaged. The violent shaking 
resulted in a nuclear emergency, in which the 
Fukushima Daiichi nuclear power plant began leaking 
radioactive steam. The estimated cost of the damage 
reached US$235 billion. The great Tohoku tsunami also 
caused widespread and severe structural damage to 
various infrastructures in north-eastern Japan, 
especially in the coastal area of Iwate, Miyagi, 
Fukushima and Ibaraki Prefectures. More than 250 
bridges were washed away. As an example, Tsuyagawa 
Bridge in the Kesennuma line of JR-EAST suffered 
extensive damage by tsunami as shown in Fig.1, where 
the bridge decks were washed away and the RC piers 
were severely damaged by the tsunami forces 
(Kawashima et al., 2011).  

The objective of the current study is to numerically 
investigate the collapse mechanism of Tsuyagawa 
bridge and propose structural design enhancements to 
avoid such collapse in future under similar tsunami. 
The choice of the numerical method to do such 
investigation was very important because of the 
significant need to simulate the collapse of different 
parts of the bridge to the end. Although the FEM is a 
robust and well established structural analysis method, 
it is not the optimum solution for the current study 
scope. Many drawbacks are associated with the FEM 
progressive collapse analysis; the element damage 
separation, falling and collision with other elements are 
very difficult (Hartmann et al., 2008). Therefore, in the 
current study, the numerical analysis was carried out 

using the Applied Element Method. The Applied 
Element Method is based on discrete crack approach 
and is capable of following the structure's behavior to 
its total collapse (Tagel-Din and Meguro, 2000, Meguro 
and Tagel-Din, 2001, Tagel-Din, 2002, Meguro and 
Tagel-Din, 2003, Sasani and Asgitoglu, 2008, Salem et 
al., 2011, Park et al., 2009, Helmy et al., 2009, Helmy 
et al., 2012, Helmy et al., 2013, Sasani, 2008, Wibowo, 
2009, Salem 2011, Salem and Helmy, 2014, Salem et 
al., 2014). 
 

2. COLLAPSE OF TSUYAGAWA BRIDGE 
  

Tsuyagawa bridge consisted of 7 spans with 6 
prestressed simply supported girders (35m+40m5) and 
1 RC girder (22m). Seven conical piers and one 
abutment supported the bridge superstructure. The 
superstructures for 6 spans were completely washed 
away from their supports in the transverse direction due 
to tsunami while four of the supporting piers (P2, P3, 
P4 and P6) were extensively damaged as shown in Fig. 
1. The bearings remained attached to the pier after the 
wash away of the superstructure. 

 

3. THE APPLIED ELEMENT METHOD (AEM) 
 

The AEM is an innovative modeling method 
adopting the concept of discrete cracking. In AEM, 
structures are modeled with elements assembly as 
shown in Fig. 2. The elements are connected together 
along their surfaces through a set of normal and shear 
springs. Those springs are responsible for transfer of 
normal and shear stresses among adjacent elements. 
Each spring represents stresses and deformations of a 
certain volume of the material as shown in Fig. 2. Each 
two adjacent elements can be completely separated 
once the springs connecting them are ruptured. 

Fully nonlinear path-dependent constitutive models 
are adopted in the AEM as shown in Fig. 2. For  
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