論文 腐食を模擬した鉄筋の座屈性状に関する研究

墨野倉 駿*1・金久保 利之*2・八十島 章*3・大屋戸 理明*4

要旨:本研究では,鉄筋単体の座屈性状に着目し,切削および電食によって腐食を模擬した鉄筋を用いた座 屈試験より,座屈荷重および応力-歪関係の検討を行った。その結果,鉄筋軸方向における最小断面積の位 置が腹になるモードで座屈が見られ,断面減少率の増加にともなって最大応力の低下が見られた。切削鉄筋 および電食鉄筋の座屈荷重は,腐食による断面の偏心荷重による全塑性モーメントを考慮した降伏荷重で安 全側に評価できた。試験結果より最大応力以降の応力-歪関係のモデル化を行い,最小断面積による断面減 少率を用いて表現したモデルを提案した。

キーワード:鉄筋腐食,断面減少,座屈,応力-歪関係,切削,電食

1. はじめに

近年,建設から年数の経った鉄筋コンクリート(以下 RC)造構造物が増加してきている。それに伴い,環境作 用による構造物の経年劣化が懸念されている。劣化の中 でも,塩害,中性化などによる鉄筋の腐食が挙げられ, RC 造構造物の耐荷性状に影響を及ぼす代表的な劣化原 因となっている。

鉄筋の腐食による引張性能に関する研究が多数なさ れている一方で,圧縮性能に関する研究はほとんどなさ れていない。既往の研究¹⁾では,圧縮側の鉄筋を腐食さ せた RC 梁部材の曲げ載荷試験が行われ,鉄筋の腐食に よる周辺のコンクリートの腐食ひび割れ,さらには腐食 鉄筋の座屈により RC 部材が脆性的に破壊する可能性が 指摘された。そこで,鉄筋単体の座屈性状に着目し,鉄 筋の軸方向断面の腐食形状を切削により模擬した鉄筋を 用いた座屈試験が行われた²⁾。しかし,実際の腐食形状 は様々であり,さらなるデータの蓄積が必要であると考 えられる。

本研究では,既往の研究と同様に鉄筋単体の座屈性状 に着目し,切削および電食によって腐食を模擬した鉄筋 の座屈試験を行い,座屈荷重および応力-歪関係を検討 する。さらに,最大応力以降の応力-歪関係のモデル化 を行う。

2. 試験概要

2.1 試験体

本研究で使用する試験体は異形鉄筋とし,健全鉄筋, 切削鉄筋および電食鉄筋を用意した。

(1)健全鉄筋

健全鉄筋試験体の一覧を表-1 に示す。本研究では, 異形鉄筋 D16(SD345)および D10(SD295)を用いた。実験

*1 筑波大学大学院	シフ	、テム情報工学研	开究科構	造エネルギ	ー工学	専攻 (学	学生会員)
*2 筑波大学准教授	シブ	マテム情報系構成	告エネル	ギー工学域	博士	(工学)	(正会員)
*3 筑波大学助教 🔅	システ	- ム情報系構造	エネルギ	一工学域	博士(工学)	(正会員)
*4 鉄道総合技術研究	究所	構造物技術研究	充部 主	任研究員	博士(工学)	(正会員)

表—1	健全鉄筋試験体の・	—暫
<u> </u>		ᅳᅳ

試験体名	試験長 d:鉄筋径(mm)		
健全鉄筋D16	64 94 104 124 144 164 194 204		
健全鉄筋D10	0 <i>a</i> ,8 <i>a</i> ,10 <i>a</i> ,12 <i>a</i> ,14 <i>a</i> ,10 <i>a</i> ,18 <i>a</i> ,20 <i>a</i>		

表-2 切削鉄筋試験体の一覧

	試験長		切削率(%))		
試験体名	d:鉄筋径(mm)	U	С	D		
U-0,C-15,D-0		-	15	-		
U-15,C-0,D-15		15	-	15		
U-15,C-15,D-15		15	15	15		
U-30,C-0,D-0		30	-	-		
U-0,C-30,D-0		-	30	-		
U-30,C-30,D-0		30	30	-		
U-30,C-0,D-30	16 <i>d</i>	30	-	30		
U-30,C-30,D-30		30	30	30		
U-0,C-45,D-0		-	45	-		
U-45,C-0,D-45		45	-	45		
U-45,C-15,D-45		45	15	45		
U-45,C-30,D-45		45	30	45		
U-45,C-45,D-45		45	45	45		

因子は試験長とし, 6d, 8d, 10d, 12d, 14d, 16d, 18d, 20d (d:鉄筋径)の計8種類(有効細長比でおおよそ100 未満)の試験体を用意した。

(2)切削鉄筋

切削鉄筋試験体の一覧を表-2 に、試験体の詳細を図 -1に示す。健全鉄筋試験体と同一の異形鉄筋 D10 を用 い、試験長は 16d とした。既往の研究²⁾と同様に、かぶ り面での腐食が進行する場合を考慮して、ディスクサン ダーを用い、図-1 下図に示す領域を切削した。切削箇 所は中央部のみ(C シリーズ)、上下2カ所(U-D シリー ズ)および3カ所(U-C-D シリーズ)である。切削は鉄 筋腹部の最小径位置における切削深さにより行い(図-

2), 公称断面積と等価な断面積を有する楕円に対して, 断面積比(切削率)が15%,30%,45%となるように決定 した。

(3)電食鉄筋

既往の研究¹⁾で,載荷試験を行った,圧縮側の鉄筋を 電食により腐食させた RC 梁部材の圧縮側鉄筋 (D10) を はつりだし,計6体の電食鉄筋を用意した。試験長は16d である。はつりだした後,除錆した試験体の外観の例を 図-3に示す。試験体 No.1では,全体的に腐食が進行し ている。試験体 No.6では,全体的に腐食が見られ,かつ, 局所的な腐食も見られる。3D スキャナによる断面計測手 法³⁾を用い,各試験体の断面積分布を計測した。計測結 果を図-4 に示す。図中の破線は,同様に 3D スキャナに

より計測した同一の健全鉄筋の平均断面積(67.11mm²) を示している。電食鉄筋の平均断面積,最小断面積およ び断面減少率(3Dスキャナによる健全鉄筋の平均断面積 に対する比)の値の一覧を表-3に示す。各試験体の健 全鉄筋の引張試験結果を表-4に示す。

	お歌目	最小	、断面積	平均断面積	
試験体名	武破丧 d:鉄筋径(mm)	(mm ²)	減少率(%)	(mm ²)	減少率(%)
No.1		52.79	21.34	58.66	12.60
No.2	16 <i>d</i>	34.25	48.96	52.95	21.10
No.3		53.32	20.54	57.86	13.79
No.4		44.59	33.55	53.32	20.55
No.5		42.38	36.84	55.06	17.96
No.6		24.99	62.76	46.29	31.02

表-3 電食鉄筋試験体の最小断面積と平均断面積

衣 二 4 5 1 1 衣 武 殿 祁 才	表-4	引	脹試	験結	果
-----------------------	-----	---	----	----	---

試験体	引張強度	降伏強度	弾性係数
	(MPa)	(MPa)	(GPa)
異形鉄筋D16	516	358	198
異形鉄筋D10	468	346	192
	(538)	(400)	(188)

(): 電食鉄筋に用いた異形鉄筋 D10 の材料試験結果¹⁾

2.2 加力および計測方法

加力および計測方法を図-5 に示す。加力には 500kN 万能試験機を用い,単調圧縮載荷を行った。試験機のヘ ッドに試験体固定用のジグを取り付け,ジグ内に研磨し た鉄筋の端部を 8d 挿入することで境界条件を固定とし, 座屈試験を行った。なお,ジグの孔径は異形鉄筋 D16 の 場合,16.3mm,D10 の場合,9.6mm とし,孔と研磨した 鉄筋の間に隙間が生じないようにした。計測項目は,圧 縮力およびジグ間の3箇所における軸方向変形である。 試験区間における圧縮変形は,計測された軸方向変形か らジグ内に挿入した部分の鉄筋の変形(弾性を仮定)を 差し引くことにより求めた。

3.試験結果

3.1 健全鉄筋

健全鉄筋の応力-盃関係の例を図-6 に示す。各試験 体ともに、概ね引張試験で得られた降伏強度で座屈が見 られた。最大応力以降の曲線は、試験長が短くなるにつ れ緩やかになる傾向が見られた。また、試験長が 12d 以 下の試験体においては、降伏棚が見られた。

3.2 切削鉄筋

座屈試験後の切削鉄筋の例を図-7 に示す。最小断面 積の切削位置が腹となるモードで座屈が見られた。また, 同一の最小断面積の箇所が中心位置を含め複数ある場合, 試験体の中心位置が腹となるモードで座屈が見られた。 切削鉄筋の応力-歪関係の例を図-8 に示す。また,各 試験体の最大応力で基準化した応力-歪関係の例を図-9 に示す。断面減少率の増加により最大応力の低下が見 られた。また,最大応力以降の曲線は,断面減少率の増 加にしたがって緩やかになる傾向が見られた。さらに, 座屈モードの腹の位置によって最大応力以降の曲線に差

異が見られ,試験区間の中心が腹となる場合よりも端部 に近い位置で腹となる場合の方が,試験体の曲げ剛性が 大きくなることから,緩やかになる傾向を示した。切削 鉄筋の断面減少率と座屈荷重比(健全鉄筋の座屈荷重に 対する比)の関係を図-10に示す。図中に示す,(1)切削 位置の断面減少を考慮した降伏荷重,(2)切削断面の偏心 荷重による全塑性モーメントを考慮した降伏荷重²⁾(図 -11)で評価を行った。切削鉄筋では圧縮荷重の作用位 置と切削断面の図心に偏心が生じるためモーメント荷重 の影響を受ける。(2)の降伏荷重は,作用力の偏心を考慮 し,切削断面における圧縮,引張の応力分布が全塑性状

態になる中立軸位置を求め、そのときの曲げモーメント および圧縮荷重を断面解析により求めるものである。本 試験結果は、(2)の降伏荷重で安全側に評価できている。 3.3 電食鉄筋

電食鉄筋の応力-歪関係を図-12に示す。切削鉄筋の 場合と同様に断面減少率の増加により最大応力の低下が 見られた。電食鉄筋の断面減少率と座屈荷重比の関係を 図-13に示す。梁部材の既載荷試験により既に座屈を経 験しており,座屈屈曲部での降伏強度が見かけ上引張試 験結果より増加している可能性があるが,3Dスキャナに より計測した最小断面積による断面減少率を用いて,降 伏比(0.74)を考慮しても(2)の降伏荷重で安全側に評価 できている。実際の構造物における鉄筋腐食には様々な 形態が考えられるが,(2)の降伏荷重は,腐食の偏在を考 慮した座屈荷重の下限値を示すと考えられる。

4.最大応力以降の応力-歪関係のモデル化

4.1 モデル化の方法

(1)健全鉄筋

本研究で用いた異形鉄筋 D16 および D10 に加え, 既往 の研究²)による異形鉄筋 D13 の試験結果を用いてモデル 化を行った。健全鉄筋の最大応力以降の応力-歪関係は, 式(1)で定式化する。式(1)における座屈強度 σ_b および座屈 開始時歪 ε_b について,降伏棚がない試験体の場合はそれ ぞれ最大応力および最大応力時の歪とし,降伏棚がある 試験体の場合は, **図**-14 に示すように, $\varepsilon_y - \varepsilon'_y$ (降伏 点 σ_y 時の歪 ε_y と最大応力以降の負勾配曲線との交点の歪 ε'_y)間の応力の平均値およびその値と負勾配曲線との交 点の歪とした。降伏棚がある健全鉄筋試験体の座屈開始 時歪 ε_b の一覧を表-5 に示す。 β の値は以上の方法で試 験体ごとに求め,最小二乗法により式(2)を得た(**図**-15)。

$\sigma = \sigma_b (\varepsilon_b / \varepsilon)^\beta$	(1)
$\beta = 0.051(L/d)$	(2)

ここで,

L. 武殿 云(mm)

d:鉄筋径(mm)

(2)切削鉄筋・電食鉄筋

切削鉄筋および電食鉄筋では、断面減少率の増加によ り最大応力以降の曲線は緩やかになることから,式(1)に 対して最小断面積における断面減少率を考慮し,式(3)で 定式化する。

$\sigma = \sigma_{max} (\varepsilon_b / \varepsilon)^{\beta \sqrt{1 - \alpha / 100}}$	(3)
ここで,	
σ _{max} :最大応力 (MPa)	
ε_b :座屈開始時歪	

図-14 obおよび ɛbの決定法

表-5 座屈開始時歪(降伏棚がある健全鉄筋)

試験長		座屈開如	台時歪 ε_b	
d:鉄筋径(mm)	D	16	D13	D10
12 <i>d</i>	-	0.0094	-	0.012
10 <i>d</i>	0.014	0.019	/	0.029
8 <i>d</i>	0.043	0.049	0.026	0.039
6 <i>d</i>	0.19		0.076	0.15

 ^{-:}降伏棚がない健全鉄筋

α:断面減少率(最小断面積)(%)

4.2 試験結果とモデルとの比較

試験結果と提案したモデルとの比較(健全鉄筋では応力を σ_b で,切削鉄筋および電食鉄筋では σ_{max} で基準化)を図-16~図-18に示す。提案したモデルによる座屈開

図-18 電食鉄筋の試験結果とモデルとの比較

始時以降の応力-歪関係は,健全鉄筋,切削鉄筋および 電食鉄筋ともに試験結果の挙動を概ね再現できている。

5.まとめ

腐食を模擬した切削鉄筋の座屈は、最小断面積の位置 が腹になるモードで生じ、断面減少率の増加にともなっ て最大応力の低下が見られた。また、最大応力以降の応 カー歪関係の曲線は緩やかになる傾向が見られた。鉄筋 断面の片側で腐食が進行する場合を考慮した切削鉄筋の 座屈荷重は、切削断面の偏心荷重による全塑性モーメン トを考慮した降伏荷重で、安全側に評価できた。また、 様々な腐食箇所を有する電食鉄筋においても、3Dスキャ ナにより計測した最小断面積による断面減少率を用いて、 同様に安全側に評価できた。

健全鉄筋の試験結果を基に最大応力以降の応力-歪 関係のモデル化を行い、切削鉄筋、電食鉄筋ともに最小 断面積による断面減少率を用いて表現することにより、 試験結果の挙動を概ね再現できた。

謝辞

本研究は科学研究費助成事業(基盤研究(C)課題番号 24560593)によっている。

参考文献

- 鈴木健二,金久保利之,八十島章,大屋戸理明:圧 縮鉄筋が腐食した RC 梁部材の曲げ挙動,JCI,鉄筋 腐食したコンクリート構造物の構造・耐久性能評価 の体系化シンポジウム論文集, pp.259-264,2013.11
- 金久保利之,八十島章,大屋戸理明,武田惇志,鈴 木健二:腐食を模擬した切削鉄筋の座屈性状,土木 学会年次学術講演会講演概要集,5-452 号,pp.905-906, 2014.9
- 大屋戸理明,金久保利之,山本秦彦,佐藤勉:鉄筋 腐食性状が鉄筋コンクリート部材の曲げ性状に与 える影響,土木学会論文集 E, Vol.62, No.3, pp.542-554, 2006.8