論文 CES 造柱梁接合部のせん断抵抗機構に関する基礎研究

小島 佑太*1・吉野 貴紀*1・小山 勉*1・松井 智哉*2

要旨: 鉄骨と繊維補強コンクリートのみを用いた構造システムである CES 合成構造における内柱梁接合部の 力学的性状を明らかにすることを目的として,破壊形式,柱シアスパン,柱断面形状を変数とした5体の CES 造柱梁接合部試験体を用いた静的加力実験を実施した。本論では、当該接合部の破壊性状,復元力特性およ び変形挙動について検討するとともに、ストラット機構による接合部せん断耐力の算定式を提案し、その妥 当性について検討を行った。

キーワード: CES 合成構造, 柱梁接合部, 繊維補強コンクリート, 静的加力実験

1. はじめに

CES (Concrete Encased Steel) 合成構造システムは,鉄 骨鉄筋コンクリート構造から鉄筋を省略し,普通コンク リートに替えて繊維補強コンクリート(以下 FRC)を用 いた構造システムであり,実用化に向けた研究が継続的 に実施されている。

本論で対象としている CES 造柱梁接合部に関する研 究では、これまでに破壊形式、パネルゾーンのフランジ、 スチフナ、ウェブの厚さ、軸力などを変数とした実験^{1)、} ²⁾や、スラブ付き柱梁接合部の実験³⁾等を行い、上記の構 造因子が破壊性状、復元力特性など構造性能に及ぼす影 響を把握するとともに、耐力評価方法の検討を行ってき た。さらに、CES 造柱梁接合部の終局せん断耐力評価法 を提案する上で重要であるパネルゾーン周辺の応力伝達 メカニズムの把握を目的とした 3 次元非線形 FEM 解析 の研究⁴⁾ も実施してきた。その結果としてパネルゾーン のコンクリートは、鉄骨に囲まれた領域、囲まれていな い領域において応力状態が異なることを明らかにしてき た。

ー方で,柱・梁・パネルゾーンで構成される柱梁接合 部の構造性能は,多くの要因により影響され,未だに不 明な点が多いと考える。そこで,本研究では,破壊形式, 柱長さ(シアスパン)および柱の断面形状を実験変 数として静的加力実験を行い,CES造柱梁接合部の 構造性能を把握するとともに,パネルゾーンのコン クリートの応力状態について検討を行う。

2. 実験概要

2.1 試験体

試験体一覧を表-1に,試験体詳細図を図-1に示 す。試験体は,CES架構の内柱梁接合部を想定した 約 1/2.7 縮尺モデルの 5 体であり,部材反曲点を模 擬するために柱上下端部および梁左右端部にそれぞ

れピン支承を設けている。実験変数は,破壊形式, 柱長 さおよび柱断面形状とした。試験体 JB-1 および JB-2 は梁 曲げ降伏先行型を想定し、試験体 JP-1、JP-2 および JP-3 は接合部せん断破壊先行型を想定した試験体としている。 柱内蔵鉄骨には両試験体共通でH-300×220×10×15を用 いているが、梁内蔵鉄骨には梁降伏型試験体では H-300 ×150×6.5×9を, 接合部せん断破壊試験体では H-300× 150×12×25 をそれぞれ用いている。パネルゾーンについ ては、梁降伏型試験体では通し柱としており、パネルゾ ーンのウェブ厚と柱内蔵鉄骨のウェブ厚は共に 10mm で ある。接合部せん断破壊試験体では、破壊形式をせん断 破壊とするために、パネルゾーンのウェブ厚を 4.5mm に 変更している。梁長さは全試験体共通で左右に取付けた ピン支承間の距離を 2,250mm とした。試験体 JB-1 および JP-1は,柱の上下に取付けたピン支承間の距離が1,300mm, 試験体 JB-2, JP-2 および JP-3 では 1,600mm とする。 梁断 面は, 300×400mm である。柱断面は試験体 JB-1, JB-2, JP-1 および JP-2 では 400×400mm としているが, 試験体 JP-3 のみは、柱と梁の幅を同じにして柱断面を 300× 400mm に変更している。

2.2 使用材料

表-2と表-3に FRC 及び鉄骨の材料特性を示す。鉄

衣一 武殿 本一見							
試験体		JB-1	JB-2	JP-1	JP-2	JP-3	
破壊形式		梁曲げ降伏		接合部せん断破壊			
柱	内蔵鉄骨	H-300×220×10×15					
	柱高さ:h	1300	1600	1300	1600		
	断面:B×D	400×400				300×400	
梁	内蔵鉄骨	H-300×15	H-3	H-300×150×12×25			
	梁長:1	2250					
	断面:B×D	300×400					
パネル	フランジ	15		15			
	スチフナ	9		25			
	ウェブ	10		4.5			
軸力比(N/N₀)		0.15	0.145	0.152	0.143	0.143	
(寸法の単位:mm)							

表-1 試験体一覧

*1 豊橋技術科学大学大学院 工学研究科建築・都市システム学専攻 院生 (正会員)

*2 豊橋技術科学大学大学院 工学研究科建築・都市システム学系 准教授 博士(工学) (正会員)

骨には鋼種 SS400 を, コンクリートには FRC を用いた。 FRC の設計強度は Fc=30N/mm² である。補強繊維は直径 が 0.66mm で,長さが 30mm のビニロンファイバー (RF4000)を使用した。体積混入率は 1.0%とし,水セ メント比は 60%である。

2.3 載荷計画

載荷は、図-2 に示す載荷装置を用いて行った。試験 体は柱上下端部および梁左右端部にそれぞれ取付けられ たピン支承を介して載荷装置に設置し,試験体に柱部材 軸と平行に作用させた軸力下で静的漸増繰り返し水平力 載荷を行った。作用させた軸力は,SRC 規準に従って算 定した CES 柱の終局圧縮耐力 N₀に対する軸力比 N/N₀ で 0.15(試験体 JB-1)として計算し,885kN とした。た だし,柱断面が 300×400mm である JP-3 は 755kN とし た。水平力載荷は変形制御とし,柱上下端に取付けたピ

図-1 試験体詳細図

表-2 FRCの材料特性

試験体	σ _c (MPa)	E _c (GPa)	ε _{c0} (μ)	材齢 (日)	
JB-1	24.2	19.1	2589	52	
JB-2	25.9	21.3	2333	64	
JP-1	23.7	20.6	2335	58	
JP-2	26.3	21.9	2523	68	
JP-3	26.2	20.4	2267	72	

σ_c: 圧縮強度, E_c: 弾性係数,

ε_{co}:圧縮強度時ひずみ

ン支承間の相対水平変位δと上下ピン支承間距離hで与 えられる相対部材角R(=δ/h)で,0.005,0.01,0.015, 0.02,0.03rad.および 0.04rad.を2 サイクルずつ繰り返し た後0.05rad.まで載荷を行い,実験を終了した。

2.4 計測計画

計測変位は、制御変位となる水平変位、接合部パネル 及び梁端部の変形とした。また、鉄骨フランジ及びウェ ブのひずみをひずみゲージにより計測した。また、繰り 返し載荷における第1サイクルのピーク時と除荷時にお いてクラックスケールを用いてひび割れ幅を計測した。

3. 実験結果

3.1 破壊性状と水平荷重 - 層間変形角関係

図-3 に各試験体の最大耐力時のパネルゾーン周辺の 破壊状況を、図-4 に各試験体の水平荷重-層間変形角 関係を示す。図-4 中の破線は 3.2 節で示す計算耐力を表 す。接合部ウェブの降伏は、接合部ウェブに貼付した 3 軸ひずみゲージにより得られたひずみ測定値を用いてロ ゼット解析を行い、平面応力場における Von Mises の降 伏条件を満たしたときとした。

梁降伏型試験体で柱長さが異なる JB-1 および JB-2 で は、1/200rad.のサイクルで、柱および梁に曲げひび割れ が発生し、梁鉄骨フランジの降伏が確認された。1/100rad. のサイクルでは、パネルゾーンにせん断ひび割れが発生 し、接合部ウェブが降伏したことが確認できた。1/67rad. のサイクルで梁端部で圧縮ひび割れが見られ始め、 1/33rad.のサイクルで試験体 JB-1、JB-2 共に最大耐力に

表-3 鋼材の材料特性

内蔵鉄骨 (SS400)	試験体	σ _y (MPa)	σ _⊳ (MPa)	E _s (GPa)	備考
H-300×220	土涌	292	436	188	柱フランジ
×10×15	八進	326	459	168	柱ウェブ
H-300×150	JB-1, JB-2	312	427	183	梁フランジ
×6.5×9		394	485	206	梁ウェブ
H-300×150	JP-1, JP-2,	292	414	184	梁フランジ
×12×25	JP-3	266	415	193	梁ウェブ
PL-9	JB-1, JB-2	307	421	208	接合部スチフナ
PL-4.5	JP-1, JP-2, JP-3	282	413	195	接合部ウェブ

 σ_{c} :降伏応力度, σ_{b} :引張強度, E_{s} :弾性係数

図-3 最大耐力時における破壊状況

両試験体とも10mm程度まで拡幅している。結果として、 両試験体共に類似した破壊経過を示した。

接合部せん断破壊型試験体の内,柱長さが異なる試験 体 JP-1 および JP-2 の 2 体においても,類似した破壊経 過を示している。1/200rad.のサイクルで梁に曲げひび割 れ及びパネルゾーンにせん断ひび割れが発生し,接合部 ウェブの降伏を確認した。1/100rad.のサイクルでは,パ ネルゾーンのせん断ひび割れが進展し,新たなせん断ひ び割れも発生した。また,梁鉄骨フランジの降伏を確認 した。その後の 1/67rad.のサイクルでパネルゾーンのせ ん断ひび割れが拡幅し,両試験体共に最大耐力に達した。 最大耐力以降は,パネルゾーンのコンクリートの損傷の 進行とともに耐力が低下していく。

接合部せん断破壊型試験体で柱の断面が 300×400mm である試験体 JP-3 では,試験体 JP-1, JP-2 とは異なり, 1/200rad.のサイクルで接合部ウェブ及び梁鉄骨フランジ の降伏を確認した。また,1/67rad.のサイクルで最大耐力 に達した時の損傷状況を見ると,試験体 JP-1, JP-2 では パネルゾーンにおけるコンクリートの損傷状況は,中央 にXの字に発生するせん断ひび割れが大きく拡幅してい くのに対し,試験体 JP-3 の場合は,パネルゾーンにせん 断ひび割れが分散して発生し,コンクリートが損傷を受 けている。このことから,試験体 JP-3 で観察できる梁と 柱により囲まれたパネルゾーンの最外部コンクリートと, 試験体 JP-1, JP-2 におけるパネルゾーンの最外部コンク リートの応力伝達状態は異なっていることがいえる。

3.2 耐力計算

表-4 に実験値と計算耐力との比較を示す。柱及び梁 の終局曲げ耐力は一般化累加強度理論により計算し、パ ネルゾーンの終局せん断耐力は SRC 規準⁵⁾に基づいて算 出した。接合部パネルせん断強度の算出法を以下に示す。

$${}_{c}\mathcal{Q}_{pu} = \frac{j_{b} \cdot l}{(l - j_{c}) \cdot h - j_{b} \cdot l} \cdot \mathcal{Q}_{pu}$$
(1)

$$Q_{pu} = {}_J F_s \cdot {}_J \delta \cdot {}_c A_e + \frac{1.2 \cdot {}_{sw} \sigma_y \cdot {}_{sw} A}{\sqrt{3}}$$
(2)

$$_{J}F_{s} = \min\left(0.12F_{c}, 1.8 + \frac{3.6F_{c}}{100}\right)$$
 (3)

梁降伏型である試験体 JB-1, JB-2 では,実験値が梁の 終局曲げ耐力を上回り,接合部の終局せん断耐力には達 していないことから,梁降伏が先行したと判断できる。 また,実験との比率をみると,両試験体ともに 1.1 倍程 度であり,累加強度理論によって CES 造梁の終局曲げ耐 力は概ね評価可能であるといえる。

接合部せん断破壊型試験体である JP-1, JP-2 及び JP-3 試験体では,実験値が接合部せん断耐力の柱層せん断力 換算値を上回り,梁の終局曲げ耐力には達していないこ とから,想定通り接合部せん断破壊が先行したと判断で きる。実験耐力と計算耐力の比率をみると,1.31~1.39 倍と安全側に評価はできているものの,若干の過大評価 する傾向が確認できた。

3.3 パネルゾーンの復元力特性

図-7 に R=0.03rad.までのパネルゾーンの負担せん断 カーパネルのせん断変形関係の包絡線を示す。また,用 いた変位の計測位置を図-6 に示す。パネルゾーンのせ ん断力 を式(4)より,パネルゾーンのせん断変形角を式 (6)よりそれぞれ求めた。ここで,*l*及び*h*は梁及び柱の 反曲点距離, Q_b 及び Q_c は,それぞれ梁及び柱のせん断 力である(図-5参照)。なお,ここでいうパネルゾーン とは,鉄骨フランジとスチフナに囲まれた領域としてお り、変位 δ_I , δ_2 を計測する変位計は,鉄骨フランジに取 り付けたボルトを介して設置した。

$${}_{p}Q_{c} = \frac{2M'_{b}}{j_{b}} - Q_{c} = 2M_{b} \cdot \left(\frac{l - j_{c}}{l' \cdot j_{b}} - \frac{l}{l' \cdot h}\right)$$
(4)
$$M_{t} = Q_{t} \cdot l'/2$$
(5)

 $\gamma_{p} = \frac{\sqrt{j_{b}^{2} + j_{c}^{2}}}{2(j_{b} \cdot j_{c})} \cdot \frac{(\delta_{1} + \delta_{2})}{2}$ (6)

梁降伏型試験体に比べ,接合部せん断破壊型試験体で は、降伏点にばらつきはあるが、概ね $\gamma p=0.05\sim0.16\times 10^{-2}rad$.時に降伏しており、梁曲げ破壊型より小さい変形 角での降伏が確認できる。接合部せん断破壊型試験体か ら、パネルゾーンはおよそ $\gamma_p=1.6\times10^{-2}rad$.で最大耐力に 達することがわかる。次に、柱長さの違いに着目すると、 梁降伏型と接合部せん断破壊型それぞれの試験体で、柱 の長い試験体の負担せん断力は、柱が短い試験体の負担 せん断力の約1.1倍程である。これは、式(4)からわか るように柱が長くなると Q_c が小さくなるためである。こ の程度の負担せん断力の違いでは、3.1節で示した破壊性 状や、3.4節で示す変形性状のように、パネルゾーンの挙 動に特に影響を及ぼさないことが確認できた。

3.4 パネルゾーン及び柱の変形性状

図-8 に R=0.03rad.までの 1 サイクルピーク時のパネ ルゾーンのせん断変形,柱の回転角の推移を示す。パネ ルゾーンの変形角を式(6)より算出し,柱の回転角は式 (7)よりぞれぞれ求めた上下柱の回転角の平均値である。

$$\theta_c = \frac{\delta_3 - \delta_4}{j_c}, \quad \theta_c = \frac{\delta_6 - \delta_5}{j_c} \tag{7}$$

パネルゾーンのせん断変形を見ると、当然のことなが ら、接合部せん断破壊型試験体では、曲げ破壊型試験体 のせん断変形よりも大きいせん断変形が生じている。柱 長さによるパネルゾーンのせん断変形への影響は、梁降 伏型と接合部せん断破壊型の試験体共にほとんどなく、 差異は認められなかった。

柱の回転角をみると、これも梁及び接合部の断面が異

-3

表一4 終局耐力一覧						
試験体	JB-1	JB-2	JP-1	JP-2	JP	
実験值cQmax(KN)	494	407	509	417	37	
柱曲げ耐力 cQc(kN)	1138	863	1134	866	81	
梁曲げ耐力 cQb(kN) ^{※1}	446	364	764	623	62	
接合部せん断耐力 cQpu (kN) ^{※1}	548	425	387	305	27	
接合部せん断余裕度 ^{※2}	1.23	1.17	0.51	0.49	0.4	
実験値/計算値 cQmax/min(cQb.cQpu)	1.11	1.12	1.32	1.37	1.3	

※1 柱層せん断力換算値, ※2 せん断余裕度=接合部せん断耐力/梁曲げ耐力

図-7 パネルゾーンのせん断カーせん断変形関係□

なるため各部材の剛性が異なることから当然のことでは 角の量は異なる。さらに、ここでもパネルゾーンのせん 断変形と同様、柱の回転角に及ぼす柱の長さによる影響 はほとんど見られず、差異は認められなかった。

4. せん断抵抗機構と耐力評価

ここでは,3.2節に示したようなパネルゾーンの有効面 積にせん断応力度を乗じる接合部せん断強度算定法とは 異なり,パネルゾーンのそれぞれの領域において圧縮力 のみに抵抗するコンクリートストラットを考えることに よってせん断強度を評価する手法について検討を行う。

コンクリートのストラット機構によるせん断抵抗力の 概念図と基本式を図-9および式(8)に示す。式(8)は、仮 定する圧縮ストラットに生じる圧縮力の水平成分として 表されるものである。

H形鉄骨内蔵のCES造柱梁接合部におけるパネルゾー ンのコンクリートのせん断抵抗機構について考えるに際 して、パネルゾーンは、図-10に示す次のせん断抵抗要 素(領域)に分類されると仮定する。すなわち、コンク リートのパネルゾーンの内、パネル a は鉄骨フランジお よびスチフナによって拘束されたコンクリートにおいて 圧縮ストラットを形成する。パネルbは鉄骨で拘束され ていないが、柱および梁からの圧縮力により、鉛直力お よび水平力が伝達され、圧縮ストラットを形成する。パ ネル c は、柱からの圧縮力により圧縮ストラットが形成 されると仮定する。このとき、水平力はパネルbから伝 達されると考えられる。

これらの3つの領域の応力状態については,筆者らが 実施した3次元 FEM 解析⁴⁾から,コンクリートパネルに 生じる圧縮ストラットの形成状況が異なることを明らか

図-9 ストラット機構による水平せん断力

にした。また,今回の実験においては,試験体 JP-2 と JP-3 のコンクリートのひび割れ状況の比較から,間接的な結 論になるが応力状態が異なることについて述べた。

そして,3 つのコンクリートのパネルゾーンのせん断 抵抗要素の V_{cp} と鉄骨ウェブのせん断耐力をそれぞれ足 し合わせることで CES 造柱梁接合部のせん断強度とし, 以下のように表される。

$$V_{pu} = \sum V_{cp,i} + \frac{1.2 \cdot_{sw} \sigma_y \cdot_{sw} A}{\sqrt{3}}$$
(9)

ここで, *i* はパネルゾーンのそれぞれのせん断抵抗要素を表す。圧縮ストラットの長さ *l*₆の算定においては,

式を簡便なものにするために柱せいの 1/2 などを用いる (図-10 参照)。また,この仮定によりそれぞれのパネ ルゾーンの応力中心位置は異なることになるが,無視す るものとし,周辺部材との力の釣り合いは式(1)を用いて, 応力中心間距離を柱および梁の鉄骨フランジの重心間距 離とする。以上のように,ここでは極めて簡略的なスト ラット機構を仮定して,せん断耐力の算定を行う。

図-11にコンクリートの圧縮強度有効係数を1とした ときの接合部せん断強度(柱せん断力換算値)の算定結 果を示す。縦軸が計算値に対する実験値の比,横軸がコ ンクリートの圧縮強度である。なお,既往の実験^{1),2)}に おける接合部せん断破壊型試験体の結果も併せて示して いる。コンクリート強度が大きいほどせん断強度を過大 評価しており、コンクリート強度が算定値の精度に及ぼ

図-10 パネルゾーンにおけるストラット機構の仮定

す定性的な影響がみてとれる。

次に、計算値が実験値と一致するようにコンクリート の圧縮強度有効係数 μ を逆算した結果を図-12に示す同 図には、求めた μ の回帰直線を併せて示している。 この回帰直線を算定式用に数字を丸めて、次式で表され る μ を本強度式に用いる。

$$\mu = \begin{cases} 1.0 & (\sigma_B < 25) \\ -0.022\sigma_B + 1.55 & (25 \le \sigma_B \le 45) \\ 0.56 & (45 < \sigma_B) \end{cases}$$
(10)

今回用いた試験体と過去に実施した実験の試験体(梁曲げ破壊型も含む)を対象に最大耐力実験値と計算耐力の比較を図-13に示す。ここで、 $_{c}V_{pu}$:接合部せん断耐力、 $_{c}Q_{b}$:梁曲げ耐力とし、それぞれ柱層せん断力換算値である。なお、対象とした試験体は、十字形柱梁接合部である。式(2)による計算結果は、接合部のせん断強度を 過小評価する傾向があったが、式(9)による結果は、式(2)と比べてせん断強度は大きくなり、結果として評価精度はよくなる。

本章で提案したせん断強度の算定式は,圧縮ストラッ トを極めて簡略化して仮定し,コンクリートの強度有効 係数も限られた実験から導いた一時的なものであるが, できた。今後,直交梁やスラブを有する場合,ストラッ ト長さの妥当性,最外部コンクリートの有効幅,コンク リートの強度有効係数について,実験的・解析的にさら に検討を進める必要がある。

5. まとめ

本研究では、CES 造柱梁接合部を対象に静的加力実験 を行い、以下の知見が得られた。

1)断面形状が異なる試験体の比較において,外部コン クリートにおける損傷状況が異なっていることから,応 力伝達状態は異なることが伺えた。

2) 今回の試験体においては, 柱長さが接合部の変形性 状に及ぼす影響は小さいことが確認された。

3)接合部せん断耐力は、既往の評価法によって安全側 に評価はできている。また、簡略化したストラット機構 によるせん断耐力式を提案し、提案式による接合部せん 断耐力は、接合部せん断破壊型試験体の実験値と概ね良 い対応を示す。

謝辞

本研究は,文部科学省科学研究費(若手研究(B),No. 24760451,代表者:松井智哉)を受けて実施した。ここ に記して謝意を表す。

参考文献

 1) 永田 論,松井智哉,倉本 洋:鉄骨コンクリート造 柱梁接合部の構造性能に関する基礎研究,コンクリート 工学年次論文集,第28巻,第2号,pp.1267-1272,2006.7.
2) 田名部 智,岩瀬 勝洋,松井 智哉,倉本 洋:CES 内部柱梁接合部における軸力の影響,日本建築学会近畿 支部研究報告集,第49号・構造系,pp.193-196,2009.6
3) 吉野貴紀,倉本洋,松井智哉:スラブ付き CES 造柱 梁接合部の静的加力実験,コンクリート工学年次論文集, 第33巻,第2号,pp.1123-1128,2011.7

 4) 松井智哉, 倉本 洋:繰返し水平力を受ける CES 柱
梁接合部の応力伝達機構,日本建築学会構造系論文集, No.630, pp.1401-1407, 2008.8

5) 日本建築学会:鉄骨鉄筋コンクリート構造計算規準・ 同解説, 2001.