論文 CES 外付耐震補強を施した垂壁・腰壁付き RC 柱の耐震性能

乃村 亮*1・田口 孝*2・Juan Jose CASTRO*3・倉本 洋*4

概要:鉄骨と繊維補強コンクリートのみからなる CES 構造を利用した外付耐震補強を, 垂壁・腰壁付きの既存 RC 柱に施すことによる耐震補強効果を把握することを目的とし,柱試験体に対する静的載荷試験を行った。本論では補強の有無,補強量を変数とした試験体の実験結果を比較検討し, CES 外付耐震補強工法を用いることにより,柱の破壊性状への影響を示すとともに,垂壁・腰壁付きの既存 RC 柱の耐震性能を向上させることができること,補強柱の終局耐力を累加強度によって評価できること示す。 キーワード: CES,繊維補強コンクリート,外付耐震補強, RC 柱,垂壁・腰壁

1. はじめに

筆者らはここ数年,鉄骨と繊維補強コンクリート (FRC)のみからなる合成構造である CES (Concrete Encased Steel)構造¹⁾を既存 RC 造建築物の外付耐震補 強に適用するための技術開発研究を継続的に行ってきて $Nる^{2)\sim6}$ 。これらの研究により既存 RC フレームに CES 部材を直付けした補強工法^{2)~5)}や既存 RC フレームと CES フレームを,床スラブを介して接続した架構増設型 補強工法⁶⁾の耐震有効性を確認してきている。

一方, CES 直付け補強工法を用いる場合には,既存 RC フレームに垂壁や腰壁などが取り付いている場合が 少なくない。そのようなフレームに CES 補強を施した場 合の耐震補強効果を把握することはもとより,その補強 効果を算定する際に柱の内法高さをどのように評価する かも重要な問題となる。

そこで本研究では CES 直付け補強に関する研究の一 環として, 垂壁・腰壁付き既存 RC 柱に CES 外付耐震補 強を施した場合の補強効果, 並びにその耐力評価法を検 討することを目的とする。

2. 実験概要

2.1 試験体概要

実験に用いた試験体は,無補強柱1体(試験体PW) および CES 補強柱2体(試験体 CW1 および CW2)の計 3体である。実験変数には補強の有無および補強量(内 蔵鉄骨量)を選択した。図-1に試験体形状を,表 -1に試験体計画をそれぞれ示す。

試験体 PW は既存 RC 柱を想定した無補強試験体である。主筋 10-D19,帯筋 2-D6@150 を配筋し,せん断破壊 先行型に設計されている。試験体 CW1 は既存 RC に断面 が200mm×400mmでH-300×130×6.5×9のH型鋼を内蔵した CES 補強を施したものである。試験体 CW2 は CES 補強部の内蔵鉄骨にH-300×130×10×15 を用いて,補強量を 増加させたものである。内蔵鉄骨は既存部に対して,柱 部分はあと施工アンカーD13 を介して,スタブ部分には 挿筋 D22 を介して取り付けられている。

*1 大阪大学大学院 工学研究科 地球総合工学専攻 大学院生 (正会員) *2 矢作建設工業(株) 地震工学技術研究所主席研究員 博士(工学)(正会員) *3 大阪大学 国際教育交流センター 特任准教授 博士(工学)(正会員) *4 大阪大学 工学部 地球総合工学専攻 教授 博士(工学)(正会員) 試験体 PW および CES 補強試験体の既存 RC 柱部分の 形状寸法は共通であり,柱断面が 400mm×400mm および 柱長が 1,600mm で,柱頭および柱脚部にそれぞれ,せい 470mm,高さ 400mm および厚さ 80mm の垂壁・腰壁が 取り付いたものである。したがって垂壁・腰壁による拘 束を考慮した場合のせん断スパン比は 1.0 となる。

CES 補強部の施工は以下の手順で行った。まず既存 RC 部分に対してビシャンによる目荒し処理を行い,あ と施工アンカーを打設する。その後、ウェブにボルト貫 通孔を設けた H 型鋼を,あと施工アンカーを介して取り 付ける。最後に型枠を設置し,図-1に示す試験体上部 から柱の下側に向かって繊維補強コンクリート(FRC) を打設した。

2.2 使用材料

表-2および表-3に実験で使用した鉄筋および鉄 骨の材料試験結果,表-4に既存 RC 柱部分に使用した 普通コンクリートおよび CES 補強部に使用した FRC の 材料試験結果を示す。また表-5および表-6には普通 コンクリートおよび FRC の調合表を示す。FRC に使用 した繊維は直径が 0.66mm,長さが 30mm のビニロンフ ァイバー(RF4000)であり,体積混入率で1.0%とした。

	試験体	PW	CW1	CW2			
	梅田	毎述み	補強				
	帆女	新福思	補強量標準	補強量大			
ŀ	既存部破壊モード		せん断破壊型				
杠	主内法高さh _o (mm)		1600				
ħ.	主の内法のせん断		1.0				
	スパン比(<i>M/QD</i>)		1.0				
	コンクリート種類	м— М	普通コンクリート				
既	断面 <i>b</i> × <i>D</i> (mm)	400 × 400					
存	主筋	10-D19(SD295)					
部	帯筋	2-D6@150(SD295)					
	壁筋	シング	ブル配筋 D6(S	D295)			
	コンクリート種類		繊維補強:	コンクリート			
補	断面 <i>b</i> × <i>D</i> (mm)		200 >	× 400			
強			H-300 × 130	H-300 × 130			
部	内蔵鉄骨断面(mm)		× 6.5 × 9	× 10 × 15			
			(SN400)	(SN400)			
	導入軸力比		0.2				

表-1 試験体計画

表-2	鉄筋材料試験結果
-----	----------

試験片	降伏応力度 (MPa)	引張応力度 (MPa)	ヤング係数 (GPa)	備考
D6	309.89	483.5	187.2	帯筋
D19	345.2	517.3	198.1	主筋

表-3 鉄骨材料試験結果

試験片	降伏応力度 (MPa)	引張応力度 (MPa)	ヤング係数 (GPa)	備考
PL-6.5	354.1	430.2	193.7	ウェブ
PL-9	292.4	421.0	198.5	フランジ
PL-10	297.4	452.1	197.8	ウェブ
PL-15	270.2	450.5	198.1	フランジ

表-4 コンクリート材料試験結果

	普通コン	ックリート	FRC		
試験体名	圧縮強度 (MPa)	材齢(日)	圧縮強度 (MPa)	材齡(日)	
PW	18.3	54	/	/	
CW1	18.4	57	31.4	40	

2.3 載荷方法

載荷は**写真-1**に示す載荷装置を用いて行った。実験 では、既存 RC 柱部分に対する軸力比 ($N/bD\sigma_B$) で約 0.2 に相当する 586kN の一定軸力の下で、正負逆対称曲げせ ん断加力を行った。水平力載荷は、柱上下端の相対水平 変位 δ と内法高さ h で与えられる相対部材角 R (= δ/h) による変位制御とした。

試験体 PW は R=0.002 と 0.004rad.を 1 サイクル, R=0.0067, 0.01, 0.015, 0.02 および 0.03rad.を 2 サイクル 行った後, R=0.04rad.を 1 サイクル行い実験終了とした。

試験体 CW1 および CW2 に関しては R=0.002 と 0.004rad.を1 サイクル, R=0.0067, 0.01, 0.015, 0.02, 0.03 および 0.04rad.をそれぞれ 2 サイクル行い, R=0.05rad.ま で一方向に載荷して実験終了とした。

写真-1 載荷装置

表-5	普通コンク	リー	ト調合表
-----	-------	----	------

水セメント比	所要量					
W/C	水	セメント	細骨材	粗骨材	混和材	
(%)	W(kg/m ³)	$C(kg/m^3)$	$S(kg/m^3)$	$G(kg/m^3)$	(kg/m^3)	
87	200	230	953	839	2.3	

表-6 繊維補強コンクリート(FRC)調合表

水セメント比	繊維混入量	入量						
W/C	Vf	水	セメント	細骨材	粗骨材	繊維	石灰石粉	混和材
(%)	vol(%)	$W(kg/m^3)$	$C(kg/m^3)$	$S(kg/m^3)$	$G(kg/m^3)$	$Vf(kg/m^3)$	(kg/m^3)	(kg/m^3)
75	1.0	180	240	913	554	13	360	2.16

3. 実験結果

3.1 破壊性状

写真-2に各試験体の正面および裏面の最終破壊状況を示す。補強試験体は正面が CES 補強部面で, 裏面が既存部面である。

試験体 PW は R=0.002rad.のサイクルで柱脚部にせん断 ひび割れが発生した後、垂壁・腰壁にもせん断ひび割れ が発生した。その後、R=0.0067rad.のサイクルで表面およ び裏面に主筋に沿ったひび割れが発生し、垂壁・腰壁の 端部と柱との接合部に局所的な圧壊が見られた。また, R=0.01rad.のサイクルでは、側面の中央付近に主筋に沿っ たひび割れが顕著に確認された。以降、これらのひび割 れの伸展が顕著となり, R=0.02rad.のサイクルにおいて試 験体表面、および裏面の主筋に沿った部分からコンクリ ートの剥落が観察された。R=0.03rad.においては、試験体 の表裏および側面のコンクリートの剥落が認められ、そ の後の載荷によりコンクリートの剥落が顕著になり、完 全に主筋が露出した。垂壁・腰壁においては、R=0.0067rad. のサイクル時に発生した壁端と柱との接合部における局 所的な圧壊の発生以降は損傷の進行は顕著ではなく、柱 の拘束に寄与する傾向が認められた。したがって、柱の 内法高さは垂壁の端部から腰壁の端部までの 800mm で あると考えても問題ないと思われる。また、破壊モード としては、付着割裂破壊を伴うせん断破壊の様相を呈し た。

補強試験体 CW1 および CW2 における補強部の破壊性 状に関しては、各試験体共にほぼ同様の傾向を示した。 *R*=0.002rad.のサイクルで柱脚および柱頭に曲げひび割れ が発生し、その後の載荷で徐々にひび割れが進展した。 また、*R*=0.0067rad.のサイクルで柱脚および柱頭と、それ ぞれの加力スタブとの接合部でひび割れが発生した。ま た内蔵鉄骨のフランジに沿ったひび割れが発生し、その 後*R*=0.04rad.のサイクルでフランジに沿ったひび割れが 拡幅した。その際にコンクリートの剥落は認められなか った。また、試験体 CW1 および CW2 における既存部の 破壊性状は試験体 PW とほぼ同じ傾向を示した。

なお、両試験体ともに *R*=0.015rad.のサイクルで既存部 と補強部との接合部でひび割れが発生したが、最終破壊 状態においても大きなずれおよび開きは確認されなかっ た。

3.2 水平荷重一水平変形特性

表-7に実験結果の一覧を、図-2に水平荷重-水平 変形関係をそれぞれ示す。図中の▼印および▽印は、試 験体に貼付したひずみゲージによって計測された主筋お よび内蔵鉄骨が最初に降伏した時点を示しており、〇印 は最大耐力が記録された点を示している。点線は4章で 後述する各試験体の終局強度計算値を示している。

試験体 PW に関しては,主筋は R=0.004rad.で降伏し, R=0.0067rad.で最大耐力 411.8kN を記録した。その後,急

PW 正面

PW 裏面

CW1 正面(補強部)

CW2 裏面(既存部)

 CW2 正面(補強部)
 CW2 裏面(既存部)

 写真-2
 最終破壊状況

激な耐力低下が見られ, R=0.04rad.で耐力が維持できなくなり載荷を終了した。

CES 補強を施した試験体 CW1 では,主筋および内蔵 鉄骨は *R*=0.005rad. で降伏し,*R*=0.01rad. で最大耐力 619.6kN を記録した。その後も試験体 PW のような急激 な耐力低下は認められず,*R*=0.05rad.まで紡錘形の履歴ル ープを描いている。

内蔵鉄骨の断面積が大きい H 型鋼を使用し,補強量が 大きい試験体 CW2 に関しても, CW1 と同様に主筋およ び内蔵鉄骨は *R*=0.005rad.で降伏したが,それ以降も耐力 は増加し, *R*=0.01rad.で最大耐力 712.7kN を記録した。そ の後は試験体 CW1 と同様に急激な耐力劣化は認められ ず, *R*=0.05rad.までエネルギー吸収性能の大きな紡錘形の 履歴ループを示した。

表-7 実験結果一覧

Force(kN)

-800

-6 -5 -4 -3-2

0 1 2

3

5 6

図-3に CES 補強部のみの水平荷重-水平変形関係 を示す。この結果は試験体の水平荷重-水平変形関係の データ間隔を 0.001rad.になるように修正し、試験体 CW1 および CW2 と試験体 PW の同水平変形時における水平 力の差分を示したものである。なお、図中に示す点線は 4章で後述する CES 補強部の一般化累加理論による終 局強度計算値を示している。

試験体CW1およびCW2ともに紡錘形の安定した履歴 ループ描いており、最大耐力以降においても耐力劣化を 起こさず安定した挙動を示した。また、両試験体の補強 部は既存部の耐力低下が顕著となる R=0.0067rad.のサイ クル以降において, CES 補強部の耐力が曲げ耐力計算値 を大きく上回っている。これは、実験において既存部の せん断破壊が進行し, 軸力が加力スタブを介して補強部 にも作用したため、CES 補強部の耐力が軸力の増加と共 に上昇したものと考えられる。

3.3 柱および鉄骨フランジの応力分布

図-4に試験体の主筋の材軸方向の応力分布を示す。 また,図-5に CES 補強部の内蔵鉄骨フランジの材軸方 向の応力分布を示す。ひずみゲージの値は同図縦軸に示 す主筋位置およびフランジ位置のものを用いた。なお, 応力の計算は鉄筋に貼付したひずみゲージの値および材 料実験の結果を用いて、鋼材の応力-ひずみ関係を完全 バイリニアにモデル化して行った。点線は垂壁・腰壁そ れぞれの壁端位置を示している。なお、主筋の応力分布 に関しては、試験体 PW の最大耐力時の R=0.0067rad.の

サイクルのものと補強試験体 CW1 および CW2 の最大耐 力時の *R*=0.01rad.のサイクルのものを示した。内蔵鉄骨 フランジの応力分布に関しても試験体 CW1 および CW2 の最大耐力時の *R*=0.01rad.のサイクルのものを示した。

試験体 PW および補強試験体 CW1 および CW2 の既存 部に関しては、図-4より主筋の材軸方向 400mm 以下 と 1200mm 以上の箇所における応力分布から、いずれの 試験体においても垂壁・腰壁からの拘束の影響を受けて いる傾向が伺える。また、一部では垂壁・腰壁内で応力 が最大となっている箇所も見られる。しかし、全体的な 傾向として 3.1 節で示した破壊性状と合わせて考察する と、内法高さは概ね壁端間の 800mm であったと想定さ れる。一方、図-5に示す試験体 CW1 および CW2 にお ける内蔵鉄骨フランジの応力分布を見ると、材軸方向 400mm 以下と 1200mm 以上の箇所における応力分布か ら既存部ほどには垂壁・腰壁からの拘束の影響を大きく 受けておらず、内法高さは材端部間の 1600mm に近かっ たのも推察できる。

また,図-6に各試験体の曲率分布を示す。この曲率

分布より試験体 PW ならびに試験体 CW1 および CW2 の 既存部と試験体 CW1 および CW2 の補強部を比較すると, 垂壁・腰壁がある 400mm 以下と 1200mm 以上の箇所で 前者は比較的曲率値が小さいのに対し,後者はそれに比 べると曲率値が大きくなっている。このことからも既存 部では垂壁・腰壁による拘束効果の影響を受けているの に対し,補強部に関してはあまり影響を受けていないも のと判断できる。

4. 終局耐力評価

表-8に耐力算定結果を示す。ここでは各試験体にお ける既存 RC 部および CES 補強部の耐力算定結果を,内 法高さ 1600mm および 800mm の 2 パターンについて計 算している。なお耐力算定において,せん断破壊先行型 である既存 RC 部に関しては,せん断耐力 $_{R}Q_{su}$ を荒川式 (mean 式)⁷⁾により算定した。CES 補強部のせん断耐 力 $_{R}Q_{su}$ は鉄骨鉄筋コンクリート構造計算規準⁸⁾に基づい て式(1)により計算し,曲げ終局耐力 $_{R}Q_{mu}$ は実験と同 様に N=0kN の条件下で一般化累加強度理論式⁸⁾により 算定した。また,補強試験体の耐力は,既存 RC 部の耐力に CES 補強部の耐力を単純累加することによって算定した。

内法高さを既存 RC 部および CES 補強部ともに 1600mm とした算定値 Q_{call} , 800mm とした算定値 Q_{call} , および既存 RC 部が 800mm で CES 補強部が 1600mm と した算定値 Q_{calb} のそれぞれと算定値 Q_e と比較すると, 試験体 CW1, CW2 ともに Q_e / Q_{calb} が最も 1.0 に近いと いう結果になった。これらの結果は,実験で確認された 既存 RC 部と CES 補強部の内法高さの評価と整合するも のであり,同時に内法高さが適切に評価されていれば, 垂壁・腰壁付きの場合でも,補強柱の終局耐力は既存 RC 部の耐力と CES 補強部の耐力の累加によって評価でき ることを示唆している。

5. まとめ

本研究では、CES 外付耐震補強を施した垂壁・腰壁付 き既存 RC 柱の耐震性能の把握を目的として、柱試験体 による静的加力実験を行った。本実験の範囲で得られた 知見を以下に要約する。

- ① せん断破壊先行型の既存垂壁・腰壁付き RC 柱に CES 補強を施すことによって既存柱の耐震性能を 飛躍的に向上させることが出来る。
- ② 既存 RC 柱に垂壁・腰壁が取り付いている場合で も CES 補強部分は、垂壁・腰壁による拘束の影響 を大きく受けず、上下材端で曲げ降伏を生じる傾 向にある。
- ③ 今回の実験における試験体形状の場合では、せん 断破壊先行型の垂壁・腰壁付き既存 RC 柱に CES 補強を施した場合のせん断耐力の実験値と算定 値の比較検証の結果、既存柱の内法高さは概ね壁 端間の 800mm であると考えても問題ないと思わ れ、補強部の内法高さは上下材端間の 1600mm で あると評価できる。
- ④ 補強柱の終局曲げ耐力は,既存 RC 柱と CES 補強 柱の累加強度を用いることにより,概ね評価でき ることが確認された。

表-8 耐力算定結果

	試験	体	PW	CW1	CW2
既友	<i>h</i> =1600	$_{E}Q_{su}(kN)$	229.5	229.6	236.8
1子 部	h=800	$_E Q_{su}(kN)$	343.1	343.3	357.0
補	<i>h</i> =1600	$_{R}Q_{mu}(kN)$	/	254.2	346.6
強	6-800	$_{R}Q_{su}(kN)$	/	480.4	583.0
部	//-000	$_{R}Q_{mu}(kN)$	/	508.3	693.2
既友	h=1600	Q _{cal1} (kN)	229.5	483.8	583.4
1 1 +	h=800	Q _{cal2} (kN)	343.1	823.7	940.0
補強	既存800 補強1600	Q _{cal3} (kN)	\square	597.5	703.6
	実験値	Q _e (kN)	411.8	619.6	712.7
	Q _e /G	cal1	1.79	1.28	1.22
	Q _e /G	cal2	1.20	0.75	0.76
	Q _e /G) _{cal3}	\backslash	1.04	0.99

参考文献

- 1)倉本洋:今伝えたいトピックス CES 合成構造システム,建築雑誌, Vol.120, No.1535, pp.34-35, 2005.7
 2)芳賀亮祐,田口孝,松井智哉,倉本洋:CES 外付耐 震補強を施した RC 柱の耐震性能,コンクリート工 学年次論文集, Vol.29, No.3, pp.1183-1188, 2007.7
- 3)佐藤美郷,倉本洋,田口孝,松井智哉: CES 外付耐 震補強 RC 柱の耐震性能に及ぼす既存柱の破壊モー ドとせん断スパン比の影響,コンクリート工学年次 論文集, Vol.30, No.3, pp.1225-1230, 2008.7
- 4)田口孝,倉本洋,松井智哉: CES 外付耐震補強 RC 柱の耐震性能に及ぼす CES 柱形状の影響,コンクリ ート工学年次論文集,日本コンクリート工学協会, Vol.31, No.2, pp.1045-1050, 2009.7
- 5)倉本洋,芳賀亮介,松井智哉,田口孝:CES外付耐 震補強 RC フレームの動的載荷実験,日本建築学会 構造系論文集, Vol.73, No.630, pp.1265-1272, 2008.8
- 6)田口孝,清水啓介,鈴木峰里,深津尚人,神谷隆, 倉本洋: CES 構造を利用した架構増設型耐震補強工 法の開発研究(その1,その2),日本建築学会大会 学術講演梗概集, Vol.C1, pp.1255-1258, 2010.9
- 7)国土交通省住宅局建築指導課ほか:2007年版 建築 物構造関係技術基準解説書,2007
- 8)日本建築学会:鉄骨鉄筋コンクリート構造計算規準・同解説,2001