論文 孔内局部載荷試験によるコンクリート強度推定に関する一考察

皿井 剛典^{*1}·田中 徹^{*2}·北山 穂高^{*3}·金子勝比古^{*4}

要旨:本稿は,構造物の任意の深度におけるコンクリート強度を推定するために開発した「孔内局部載荷試 験装置」を用いた,コンクリートへの局部載荷におけるコンクリートの破壊挙動について考察したものであ る。局部載荷後のコンクリート中の状態を確認するため,試料を非破壊・非接触で観察できる X 線 CT 装置 を用いたところ,載荷点直下にコーン状の圧密領域が形成されていることが分かった。これをもとに,孔内 局部載荷試験によるコンクリート強度の推定の過程に,土質力学における基礎の支持力問題と同様の考え方 を適用できることを証明した。

キーワード: 孔内局部載荷試験, 破壊挙動, X線 CT 装置, 圧密領域, 貫入抵抗値, コンクリート強度

1. はじめに

ート構造物に削孔したコア孔内の任意の深度において,

筆者らは、凍害等によりコンクリート表面から劣化が 進行した構造物の、任意の深度におけるコンクリート性 状を把握するための調査・試験装置として「孔内局部載 荷試験装置」(以下,試験装置)を開発し(図-1)、種々 の室内試験(孔内局部載荷試験)を実施してきた^{1),2),3)}。 「孔内局部載荷試験」(以下,載荷試験)は、コンクリ

図-1 孔内局部載荷試験装置

[測定値6点の平均]

*1 川崎地質(株) 事業本部保全技術部保全技術グループ課長代理 工修 (正会員)

*2 戸田建設(株) 土木営業統轄部環境ソリューション部主管 工修 (正会員)

*3 北海道大学大学院工学研究科環境フィールド工学専攻

*4 北海道大学大学院工学研究科教授 工博

試験装置の載荷先端を孔壁に貫入させる(図-2)こと により得られる荷重と貫入量の関係から"貫入抵抗値" を求める(図-3)ものである。

これまでに実施したコンクリート供試体を用いた載 荷試験の結果からは、載荷先端に直径 6mm の「細径半 円」を用い、同条件の 6 点の貫入抵抗値を測定すれば、 得られた貫入抵抗値をおよそ4倍した値が、載荷点付近 のコンクリート強度と推定できることが分かっている (図-4)¹。

本稿では,載荷試験による破壊状況をX線CT装置により観察し,その破壊挙動について考察する。

2.X線CT装置による破壊状況の観察

2.1 観察用試料作製

X線CT装置による破壊状況の観察用試料は,水セメント比を55%(圧縮強度56.9N/mm²),85%(27.2N/mm²), 100%(17.7N/mm²)としたφ50×L100mmのモルタル円 柱供試体の天端面(端面研磨)に「細径半円」を載荷した後に(**写真-1**),載荷点周辺にエポキシ樹脂を含浸

写真-1 モルタル供試体への載荷試験状況

材料名	種類	産地・品名	密度 (g/cm ³)
セメント	普通	太平洋セメント㈱	3.16
水	地下水	つくば市	1.00
細骨材	陸砂	外浪逆浦産(70%)	2.60
	砕砂	莒生 産(30%)	2 67

± .	ᅮᇿᅀᇿᄪᆦᄮᄱᆿ	+ $+$ $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
衣一	モルダル円性供請	ユ14の1史円が科

表-2 モルタル円柱供試体の配合

水セメント比 (%)	単位量(kg/m ³)			
	セメント	水	細骨材	
			陸砂	砕砂
55	507	279	887	390
85	328	279	990	436
100	279	279	1018	448

させ,載荷点を含むように約10~20mm角(W/C=100%のみ約20mm角とし,予備実験を行った)に切断することにより作製した(写真-2)。

なお、W/C=55%の試料は、モルタル円柱供試体が破壊 に至ったものであり、試料中に3本のひび割れを含んだ 状態である(写真-2の最上段の写真)。

モルタル円柱供試体の使用材料を表-1に,配合を表 -2に示す。水セメント比 85%及び 100%のモルタル供 試体を作製する場合,材料分離が生じやすいが(実際に, 材料分離気味であった),本実験では圧縮強度を変化さ せることに重点を置いていることから,増粘剤等の添加

写真-2 観察用試料

写真-3 X線CT装置

図-5 X線CT装置による観察(撮影)の概要

は行わずに供試体を作製した。なお,試料名は,3 つの 圧縮強度レベルの呼称として水セメント比 W/C=55%, 85%,100%を用いた。

2.2 観察方法

観察には, 試料を非破壊・非接触で観察できる X 線 CT 装置(写真-3)を用いた。この装置を用いること によって, 試料中の密度の違いを可視化(色の明暗)で きることから, 観察用試料の載荷点近傍と周辺の状態を 観察し, 比較した。

観察は,観察用試料を試料テーブルに置き,X線を照 射しながら360°回転させることにより行った(図-5)。 このような観察(撮影)を試料の上端(載荷点のある面) から厚さ0.022mmごとに行い,1試料につき390枚のス ライス(平面透過)画像を得た。

2.3 観察結果

「細径半円」により載荷したモルタル円柱供試体から 切り出した観察用試料のX線CT装置による観察の結果, 写真-4(W/C=55%),写真-5(W/C=85%,100%)に 示すスライス画像が得られた。スライス画像には、気泡 等の空隙が黒く、セメントペーストが灰色に、骨材が白 っぽく表示されている。

写真-4 試料観察画像 W/C=55%

図-6 三次元加工による気泡,ひび割れの抽出

(1) ひび割れ周辺の状態

W/C=55%の試料(写真-4)は、載荷点から3方向に ひび割れが拡がっており、試料側面において肉眼でひび 割れが確認できる。X線CT装置によるスライス画像で はひび割れや気泡は黒く見えるが、載荷面から約8mm 下の断面③には約120度の角度で分岐した3本のひび割 れが確認できる。しかしながら、載荷面の断面①や中間 の断面②では、ひび割れが載荷点周辺で途切れており、 連続していない。

図-6は、スライス画像を三次元加工し、空隙やひび 割れを抽出した図である。図中の白色部分が空隙やひび 割れを示しているが、写真-4と同様に載荷点周辺や直 下(数mmの範囲)にひび割れを示す部分(白色部)が 見られない。

これは、載荷点周辺や直下のモルタルが載荷によって

写真-5 試料観察画像 W/C=85%, 100%

圧密され、ひび割れを押し潰したために生じたと推測される。但し、その影響範囲は浅く、数 mm 程度である。

(2) 載荷点周辺の状態

写真-4や写真-5に示した各観察試料のスライス 画像には、供試体作製時に混入した気泡が黒色に表示さ れ、試料中に点在している様子が見て取れる。しかしな がら、載荷点直下に気泡は無く、周囲と異なった状態で ある。

気泡が無い領域は、スライス画像では載荷点直下に三 角形に拡がっているように見え、図-6の三次元画像で は円錐状(コーン状)となっているようにも見える。こ れは、載荷によってできた圧密領域を示していると考え られ、元々存在した気泡が押し潰されたことにより生じ たと推測される。

なお、W/C=100%の試料のスライス画像には、載荷点 直下の気泡が潰れたり、骨材にひび割れが生じた状態が 確認できる。これは、圧密途中の状態を示していると推 測され、この状態から更に載荷すると(載荷点が拡大す ると)、圧密状態(押し潰された状態)となると考えら れる。

(3) 影響範囲

載荷による圧密領域は、気泡の分布状況から、載荷点 周辺や直下数 mm のごく限られた範囲と考えられる。こ のため、載荷試験による構造物への影響は、ほとんど無 いと言える。

3. 孔内局部載荷試験における貫入抵抗値とコンクリー ト強度との関係に関する考察

3.1 破壊プロセスのモデル化

れ内局部載荷試験は、コンクリート構造物に削孔した コア孔壁に載荷先端を貫入させ、得られた荷重と貫入量 の関係から貫入抵抗値を求め、コンクリート強度を推定 するものである。

載荷先端によりコンクリート表面に一軸載荷した場 合には、荷重(厳密には載荷表面力)が小さいと、コン クリートの弾性応答により、載荷域のコンクリートは沈 下する。一方、荷重がある程度以上となると、載荷先端 直下のモルタルが圧縮降伏して塑性化し、これに伴い載 荷先端は貫入される。この時の載荷先端の貫入量には、 塑性変形に関係した載荷先端の貫入量と、弾性変形に起 因した変位量の両者が含まれていることになる。

ここで,強度と弾性率はほぼ比例関係にあることから, 塑性変形量と弾性変形量も比例すると考えることがで きる。更に,塑性変形量は弾性変形量に比較して十分大 きいと考えられることなどから,近似的には,試験装置 で測定される載荷先端の貫入量は,塑性変形による載荷 先端の貫入量にほぼ相当すると取り扱うことができる。

すなわち,図-7に示すように,載荷に伴い,載荷先 端とコンクリートの接触部の直下に受動接触面積が増 大し,その結果,接触部直下の塑性域が拡大する。すな わち,コンクリートは塑性挙動を示すが,これに伴って 載荷先端の接触面積が増大するため,見かけ上塑性的な 平衡状態が達成され,貫入量の増大に伴って荷重も増大 する。

以上のモデルに基づくと、貫入抵抗値とコンクリート 強度との関係を定式化するためには、載荷先端の形状を 考慮した載荷先端の貫入量と接触面積との関係、コンク リートの塑性状態における支持力等を明らかにしたう えで、荷重と貫入量との関係ならびに貫入抵抗値とコン クリート強度との関係を分析する必要がある。

3.2 貫入量と載荷面積との関係

「細径半円」の半径 R (=3mm),貫入量を u とし,載 荷先端がコンクリートに接触する領域を載荷領域とす ると,載荷領域半径 r は式(1)のようになる(図-8)。

図-8 載荷先端と貫入量

 $r^2 = R^2 - (R - u)^2 = 2Ru - u^2$ (1) したがって、載荷面積 A は、

 $A = \pi r^2 = 2\pi R u \left(1 - \frac{u}{2R} \right)$ (2)

ここで,

 $\frac{u}{2R} \ll 1$ \mathcal{C} σ h $\mathcal{A} \cong 2\pi Ru$ (3) \mathcal{L} \mathcal{L}

3.3 極限支持力の推定

半無限固体表面の有限領域を載荷する問題で,固体が 塑性挙動する場合の耐力を求める問題は,材料学におけ るポンチ打ち込みの支圧力問題,土質力学における基礎 の支持力問題等としてよく知られている。これらは対象 とする材料が異なるので応用分野も異なるが,いずれも 材料を塑性体と近似して載荷極限荷重を求めるもので ある。そこで,これら塑性理論に基づいて表面載荷にお ける極限支持力を推定する方法について考える。

Terzaghi は,基礎の極限支持力 q_u (N/mm2) を式(4)で 与えている。

$$q_{u} = \alpha c N_{c}(\phi)$$
(4)

但し、c は粘着力, α は形状係数で円形の場合 α =1.3 で ある。N_c(ϕ)は同一断面寸法の 2 次元帯状基礎に対する 支持力係数であり,内部摩擦角 ϕ に関係する無次元関数 である。特に,Terzaghi は $\phi = \phi$ と与えられると仮定して, 支持力係数を式(5)で与えている。

$$N_{c}(\phi) = \cot \phi \left[\frac{\exp\{(3\pi/2 - \phi) \tan \phi\}}{1 - \sin \phi} - 1 \right]$$
(5)

式(5)によると、 φ=35°のとき Nc=57.8、 φ=40°のとき Nc=95.7 である。

これに対して、Prandtl は $\phi = \pi / 4 + \phi / 2$ と仮定して、支持力係数を式(6)で与えている。

$$N_{c}(\phi) = \cot \phi \left[\exp(\pi \tan \phi) \tan^{2} \left(\frac{\pi}{4} + \frac{\phi}{2} \right) - 1 \right] \quad (6)$$

式(6)によると、 φ=35°のとき Nc=46.1、 φ=40°のとき Nc=75.3 である。

当初は、底面が粗い場合は Terzaghi の仮定が、滑らか な場合は Prandtl の仮定が成立すると解釈されており、土 の力学における基礎支持力算定の問題では Terzaghi の支 持力係数が用いられていた。しかしながら、その後、底 面の粗さ・滑らかさに関わらず $\phi = \pi/4 + \phi/2$ となること、 言い換えれば、材料に関わらず Prandtl の仮定が妥当であ ることが明らかにされている⁴⁾。

そこで,ここでは支持力係数 N_cは Prandtl の支持力係数 (式(6))を用い,載荷域形状の影響については Terzaghi の形状係数を用いた表現 (式(4))を用いることとする。

なお, X線 CT 装置による観察で載荷点直下に見られ た圧密領域は、図-9のくさび形の領域を観察したもの と考えられる。

図-9 支持力図

コンクリート強度 S _c と粘着力 c との関係は,	
$c = \xi (\phi) S_c$	(7)

$$f(\phi) = \frac{1-\sin\phi}{2\cos\phi} \tag{8}$$

である。特に、 ϕ =35°のとき ξ =0.26、 ϕ =40°のとき ξ =0.23 となる。従って、極限支持力 q_u を圧縮強度 S_cを用いて表すと式(9)となる。

$$q_{u} = \alpha \xi (\phi) N_{c}(\phi) S_{c}$$
(9)

3.4 荷重と貫入量との関係

載荷領域周囲では、コンクリートは降伏して塑性釣り 合い状態にあり、その支持力が上記の極限支持力で与え られると仮定すると、全荷重 P は、

$$\mathbf{P} = \mathbf{q}_{\mathbf{u}}\mathbf{A} \tag{10}$$

となり,

$$P = (\alpha \xi (\phi) N_{c}(\phi) S_{c})(2\pi Ru) \left(1 - \frac{u}{2R}\right)$$

$$= \operatorname{Ku}\left(1 - \frac{\mathrm{u}}{2\mathrm{R}}\right) \tag{11}$$

但し,

 $K = 2\pi\alpha R\xi(\phi) N_{c}(\phi) S_{c}$ (12)

である。

特に, $\frac{u}{2B}$ ≪1 であれば,簡単な一次式となる。

P ≃ Ku (13) ここで、式(11)及び式(13)は、荷重-貫入量曲線は貫入量 が載荷先端半径に比較して小さい範囲では直線となる こと、貫入量が比較的大きくなると上に凸の曲線となる ことを示している。

3.5 貫入抵抗値とコンクリート強度との関係

「細径半円」の場合について,貫入抵抗値とコンクリ ート強度との関係を考察する。局部載荷試験では,荷重 ー貫入量曲線の勾配から貫入抵抗値を求め,この貫入抵 抗値からコンクリート強度を推定している。特に,室内 試験における貫入抵抗値は,貫入量が比較的小さい範囲 のデータから求められていると考えると,貫入抵抗値は, 式(12)の K に相当する。従って,式(12)から,貫入抵抗 値を用いたコンクリート強度評価式は式(14)のようにな る。

$$S_{c} = \frac{1}{2 \pi \alpha R \xi(\phi) N_{c}(\phi)} K$$
(14)

ここで、「細径半円」の R=3mm であるので、

$$S_{c} = \frac{1}{6\pi \alpha \xi(\phi) N_{c}(\phi)} K$$
(15)

となる。

ここで、コンクリートの内部摩擦角を文献 5) $(35^\circ \leq \phi \leq 40^\circ)$ を参考として $\phi = 35^\circ$ とすると (支持力係数 N_cは Prandtl の式(6))、コンクリート強度 S_u (N/mm²) と

貫入抵抗値 K (kN/mm) の関係は、式(15)により Su=3.4K となる。これは、室内試験により求められた係数 4 とほ ぼ一致する値である。

なお、このような関係は、理論上いかなる強度のコン クリートに対しても成り立つと考えられるが、室内試験 では、コンクリート強度が高いほど貫入抵抗値との相関 性が弱くなる傾向にある(図-4)。このため、載荷試 験による強度推定の適用範囲は、コンクリート強度 29N/mm²以下とした¹⁾。従って、本章により証明された 関係についても、29N/mm²以下のコンクリートを適用範 囲とする。

4. まとめ

- (1) 孔内局部載荷試験によるコンクリート強度の推定の 過程には、土質力学における基礎の支持力問題と同 様の考え方を適用できることから、本試験による強 度評価が妥当であることを証明することができた。
- (2) X線 CT 装置を用いた観察により,載荷点直下に圧密 領域が確認された。これは,基礎の支持力問題にお ける基礎直下のくさび形の領域を,実際に観察した ものと考えられる。

参考文献

- 1) 皿井剛典,田中 徹,清水陽一郎,高橋 輝:孔内 局部載荷試験によるコンクリート性状の把握に関 する研究,コンクリート工学年次論文報告集,Vol.29, No.2, pp.709-714, 2007.7
- 2) 皿井剛典,高橋 輝,田中 徹,清水陽一郎:コア 孔を利用した孔内局部載荷試験装置の開発,土木学 会第61回年次学術講演会概要集6-129, pp.257-258, 2006.9
- 3) 清水陽一郎,田中 徹,高橋 輝,皿井剛典:孔内局部載荷試験によるコンクリート構造物の強度推定方法に関する研究,土木学会第 61 回年次学術講演会概要集 6-130, pp.259-260, 2006.9
- 4) (社)地盤工学会(東京),地盤工学数式入門, pp.185, 2001
- 5) 園田恵一郎,蛯名貴之:パーフォボンドリブにおけるコンクリートのせん断強度特性に関する極限解 析理論による考察,土木学会論文集 No.781/V-66, pp.213-218, 2005.2