報告 ASR が発生したフーチングの補修・補強とモニタリング

奥山 和俊*1・石井 浩司*2・奥田 由法*3・鳥居 和之*4

要旨:橋脚の柱部や梁部に代表されるように,地上の構造物における ASR 劣化は数多く確認されており,その対策工法が実際に施工されている。しかし土中に埋設されている橋脚フ ーチング部に関する劣化事例の報告はほとんど無く,そのために抑制対策も確立されていないのが現状である。そこで本報告は ASR により劣化した橋脚フーチング部の劣化状況,対 策工法および ASR 抑制効果のモニタリング結果について述べるものである。適用した対策 工法はフーチングに対して外周並びに鉛直方向に PC 鋼材を配置・緊張する PC 鋼材巻立て 工法である。

キーワード:橋脚フーチング, PC 鋼材巻立て工法,膨張拘束効果,モニタリング

1. はじめに

近年,アルカリシリカ反応(以後 ASR とする) による構造物の劣化事例が多数報告されており いろいろな対策工法が実施されている¹⁾。従来, ASR 劣化ではコンクリートの圧縮強度や静弾性 係数の低下,鉄筋とかぶりコンクリートの付着 性能の低下が懸念されてきた。これらに加え近 年,ASR による膨張が長期にわたり継続するこ とや,それによるひび割れがコンクリート内部 にまで進展すること,さらに配力筋や折曲げ鉄 筋の曲げ加工部で鉄筋破断が生じている事例な どが報告され²⁾構造物の耐荷力にも影響を与え る劣化として大きな問題になっている。

一方,ASR 劣化構造物は橋脚の梁部,柱部, 橋台,擁壁,カルバートやロックシェッド等の 構造物で確認されているが,土中に埋設されて いる橋脚フーチング部に関する劣化事例の報告 はほとんど無いのが現状である。

本稿で報告する橋脚フーチング部は,もとも とASRにより劣化した梁部を打ち換える際に上 部構造を支柱で支持するための土中掘削時にお いて発見されたものである。ここではASRによ り劣化したフーチングの状況,対策の基本的な 考え方と対策方法および対策後のモニタリング について報告する。

2. 対象橋梁の概要

今回, ASR 劣化による補修・補強を実施した 橋梁の概要を以下に述べる。

また,写真-1に本橋梁の全体写真を,図-1に橋脚の構造一般図を示す。

「写真 - 1 橋梁の全体写真

橋 梁 名: 徳田 2 号橋位 置: 石川県能登有料道路

*1 (株)ピーエス三菱 大阪支店 開発営業部 工修 (正会員)
*2 (株)ピーエス三菱 土木本部 メンテナンス部 工博 (正会員)
*3 アルスコンサルタンツ(株) 地域整備部 工博 (正会員)
*4 金沢大学大学院 自然科学研究科社会基盤工学専攻教授 工博 (正会員)

完成年月:1980年

橋梁形式:上部工 9 径間単純 P C ポストテン ション T 桁橋

> 下部工 逆T式橋台 矩形柱張出式橋脚

橋 長:302.0m

橋脚高さ:約27m

3. フーチングの劣化調査

3.1 外観劣化状況

フーチングは図 - 1 に示すように底面の保護 コンクリート上面部分まで掘削した。天端面は 全面にわたってひび割れが発生していた。ひび 割れ幅は約 5mm 程度で,一部では亀甲状のパタ ーンを呈していた。特にフーチング天端面と側 面が接する隅角部には多数のひび割れが発生し ており,コンクリートが脆弱化している箇所も あった。

隅角部においては前述の脆弱化ならびに土砂 掘削等の影響によりコンクリートが部分的に剥 離しており、その一部では鉄筋が露出していた。 フーチング側面の上方は天端面と同程度の密度 でひび割れが発生しており,特に起点側および 終点側のコーナー部には最大で幅 20mm に達す る水平方向の亀裂が生じていた。この箇所の鉄 筋はほとんどの鉄筋が破断している状態であっ たため、このような亀裂が生じたものと思われる。 側面は下方にいくにしたがってひび割れ幅およ び本数も少なくなる傾向にあった。また,全周 にわたって隅角部をはつり取って露出した鉄筋 の曲げ加工部は,ほとんど破断していた。写真 - 2 にフーチング上面の劣化状況, 写真 - 3 に コーナー部および側面の劣化状況を示す。 3.2 コアの劣化状況

外観の劣化状況を考慮してフーチングの鉛直 方向および水平方向から,図-2に示すような 位置から直径100mm,長さ約2.5mのコアをそれ ぞれ2本採取した。水平コアは何れも表面から 20~30cmの位置で破断した状態で採取され,破 断面には浸水した痕跡が確認された。

写真 - 2 フーチング上面の損傷状況

また,粗骨材の周囲のみならず骨材の内部ま で白色析出物が多く観察された。これは,ASR により骨材がひび割れした後侵入したアルカリ 分と反応した結果,ゲルが生成したものと考え られる。コア断面を写真-4に示す。

3.3 コンクリートの圧縮強度および静弾性係数

採取したコアを用いてコンクリートの力学的 性状を把握するため圧縮強度試験ならびに静弾 性試験を行った。コア No.1 は表面付近から,コ ア No.2 およびコア No.3,No.4 は表面から約 1.3m の深さについて試験を行った。コアの圧縮強度 と静弾性係数/圧縮強度比の関係を図 - 3 に示 す。いずれの試験体も圧縮強度は設計基準強度 (21N/mm²)に近いが,静弾性係数の低下が著し く,表面付近のコアは道路橋示方書が示す値の 45%まで低下しており外観観察結果との相関性 が認められた。

3.4 コンクリートの残存膨張量

コンクリートの残存膨張性を確認する目的で 促進養生試験を実施した。試験方法はカナダ法 およびデンマーク法とし,それぞれ4本の試料 を用いて行った。なお,試料は前述の圧縮強度 および静弾性係数測定用のコア No.3, No.4 の表 面付近と表面から約2.0mの深さから採取したも のである。残存膨張性試験の結果を図 - 4 およ び図 - 5 示す。

カナダ法では,コア No.3 から採取した試料が 表面および断面奥ともに大きく膨張し,その膨 張率は養生材齢28日時において0.35%程度にま で達した。コア No.4の試料の膨張率は小さなも のであったが,表面から採取した試料の膨張率 は養生材齢28日において0.2%に達した。一方, デンマーク法による試験結果では,いずれの試 料も残存膨張性不明確の判定となった。試験方 法により多少の違いがあるが100mmのコアで は NaOH 溶液および NaCI 溶液が試験体中心部ま で浸透するためには判定材齢よりも長い日数が 必要であり,コア内部まで浸透していない事か ら判断すると,フーチングコンクリートの残存 膨張性は高いと考えられた。

写真 - 3 コーナー部および側面の損傷状況

____ 面___

図 - 2 コア採取位置

写真 - 4 採取コアの断面(100mm)

4. 補強方針

目視調査の結果,橋軸・直角方向上面主鉄筋 のコーナー部における曲げ加工部において多数 の鉄筋破断が認められた。しかしながら,フー チング全体としては脆弱部を除き圧縮強度はほ ぼ基準値以上に保たれていること,フーチング 側面下方部は保護コンクリート(図-1参照) により施工当初から拘束されていることより下 面の鉄筋(フーチングの主鉄筋)は健全であろ うと推測したことから,適切な対策を施せばフ ーチングの耐荷力の確保は可能であると判断し た。対策の基本方針としてはフーチングの構造 体としての機能回復をめざすとともに,ASR の 膨張を拘束する工法をとることとした。

これらを満たす工法対策として,ASR に対す る補強として柱部で実績のあるPC鋼材巻立て 工法¹⁾を選定し,フーチングの側面の周方向およ び鉛直方向にプレストレスを与えて構造体の一 体化を図る工法を採用した。

5.補強の工程

5.1 既設フーチングのはつりおよび鉄筋補強

まず,フーチング側面ならびに上面のコーナ ー部から1mの範囲については手はつりとウォ ータージェットにより約200mmはつり出し,鉄 筋を露出させた。事前調査においてコーナー部 の鉄筋には破断が確認されたため,鉄筋に防錆 剤を塗布して破断している鉄筋には添え筋をし て補強を行った。写真-5にコンクリートはつ り完了時の状況を示す。

5.2 鉛直・フープ方向のプレストレス導入

ASR による膨張を拘束するため,鉛直・周方 向に PC 鋼材を配置し,緊張を行った。鉛直方向 の PC 鋼材は付着強度を確保できる全ネジ鋼材 のゲビンデスターブ D32 を用いた。鋼材の下端 部には 500mm の定着区間を設けその先端には付 着力を向上させる目的でナットをセットした。 さらに緊張力を広く分布させるため上端の定着 プレートに 250mm × 250mm を使用した。 また,導入するプレストレス力は ASR による膨 張の拘束効果が期待できる応力度0.2N/mm²以上 ²⁾を導入できる本数とした。

写真-5 コンクリートはつり完了状況

円周方向補強用の PC 鋼材は 1S21.8mm とし, フーチングコーナーにおいて復圧を発生させる ため最小曲げ半径 R=3.8mで配線することとし た。導入するプレストレス力は鉛直方向と同様 に 0.2N/mm²以上した。なお, PC 鋼材に与える 緊張力は ASR の膨張進行に伴う増加や地震時の 挙動による PC 鋼材応力度の増加を考慮し,有効 緊張力を降伏点荷重の 0.3~0.4 程度に設定して いる。図 - 6 および写真 - 6,7に鉛直方向と 水平方向の PC 鋼材の配置状況を示す。

6. 補強後のモニタリング

前述のように ASR 劣化フーチングに対して調 査および補修・補強を行った。そこで本工法に よる補強の妥当性,ならびに今後の補強工法の 確立に対する基礎データの収集を目的として各 種計測機器によるモニタリングを実施した。

なお,モニタリングの期間は 2005 年 5 月~ 2006 年 10 月までの約 1 年半(540 日)である。 6.1 既設フーチングの膨張拘束

既設フーチングの膨張について側面のひび割 れ部に設置した亀裂変位計による計測を行った。 亀裂変位計は比較的大きな主要ひび割れを選定 し,このひび割れに対して鉛直および水平方向 に対して設置した。図 - 7にひび割れ幅の経時 変化を示す。

この結果より既設フーチングのひび割れ幅は 初期値(補強終了時)を基準にとるとほぼ一定 の値推移をしているが,夏期にひび割れ幅が若 干減少する傾向が見られた。

6.2 鉛直方向 PC 鋼材ひずみ

フーチングの鉛直方向に対する膨張抑制効果 を確認するため鉛直方向 PC 鋼材にひずみゲー ジを貼り付け,計測を行った。

図 - 8 にひずみゲージの添付位置,図 - 9 に 経時変化を示す。計測結果より PC 鋼材は全体的 に時間の経過とともにひずみが減少する傾向に ある。この理由としては ASR によりマイクロク ラックが多く存在し,緊張直後に弾性的に収縮 はしたがその後ある段階で再びマイクロクラッ クがつぶされてひずみが進行したものと考えられる。この傾向は春から秋にかけて顕著であり 秋から冬にかけては反対に緊張力が増加する状態となった。

6.3 鉄筋ひずみ

フーチングの折曲げ鉄筋や配力筋が ASR 膨張 により破断していたことから,補強用の鉄筋に ひずみゲージを貼り付けて,鉄筋に作用する応 力状態を確認した。なお鉄筋には曲げ加工部の 内側と外側にゲージを貼り付けた。

図 - 10に鉄筋のひずみの経時変化を示す。

写真 - 6 周方向の PC 鋼材配置状況

写真 - 7 鉛直方向の PC 鋼材の配置状況

これは折曲げ鉄筋のひずみであるがひずみの変 化は鉛直方向 PC 鋼材と同様に収縮傾向にある 状態となった。

7.まとめ

これまでほとんど報告がない ASR により劣化 したフーチングに対して劣化調査をおこない, 補修方法を考案し、PC鋼材巻立て工法による 実施工をおこなった。そして工法の妥当性を検 証する目的で現在モニタリングを継続中である。 モニタリングの結果から、鉛直方向の PC 鋼材緊 張力の減少や折曲げ鉄筋ひずみが圧縮されてい る傾向を示している。この結果はフーチング全 体が鉛直方向に縮小していることを示しており, クリープによるマイクロクラック等の変形が関 係していると予想される。このひずみの経時変 化については今後もモニタリングを実施し,さ らに観察を継続する予定である。今回補強工法 として選定した PC 鋼材巻立て工法は柱部に対 する ASR の拘束効果として期待できる工法²⁾で あるが、フーチング等の部位においてはその効 果がまだ明確となっていないのが現状である。 しかし, PC 技術を応用したプレストレスを導入 することにより, ASR の拘束効果が十分に得ら れるものと考えられる。今回の補強方法ならび にモニタリング結果が今後の補強工法の確立に つながっていくものと期待している。

謝辞:本研究の実施において,ご協力頂いた石 川県道路公社に感謝いたします。

参考文献

- 鳥居和之ほか: PC 鋼材巻立てにより補強し た ASR 損傷コンクリート柱の交番載荷試験, コンクリート工学年次論文報告集, Vol.21, No.2, pp.1051-1056, 1999
- 石井浩司ほか:ASR により劣化したコンク リート橋脚も補修・補強工法による抑制効果, コンクリート工学,Vol.43,No.7,pp.42-50, 2005.7

