論文 断面修復および外ケーブル補強を実施した PC桁に関する検討

三加 崇^{*1}·渡辺 博志^{*2}·中村 定明^{*3}·中田 順憲^{*4}

要旨:塩害等による劣化が PC 鋼材まで達している PC 構造物は、大規模な断面修復が必要 となる場合がある。しかし、断面修復部はプレストレスが失われてしまい PC 構造物として の性能が損なわれてしまう。そこで、本研究では、断面修復および外ケーブルで補強を行っ た PC 桁について、暴露試験および曲げ載荷試験を実施し、部材挙動の検証を行った。その 結果、本実験における断面修復および外ケーブルによる補強方法では、健全桁と同等程度ま で性能を回復することができることが分かった。また、非線形 FEM 解析により部材挙動に ついてシミュレーションが可能であることが分かった。

キーワード: PC 桁, 断面修復, 外ケーブル, 暴露試験, 曲げ載荷試験, 非線形 FEM 解析

1. はじめに

PC鋼材によってひび割れを制御したPC橋は, 本来,RC構造物よりも耐久性に優れた構造物で あるが,海岸線付近の飛来塩分や冬期の凍結防 止剤散布により塩害劣化が顕在化する傾向にあ る。PC鋼材近傍まで塩分が浸透している場合に は,劣化部を除去し適切な補修材で修復するこ とが必要となる。そのような大規模な断面修復 を行った PC 構造物ではプレストレスの再分配 や,桁のたわみ変化に伴う PC 鋼材の応力変化が 無視できなくなる。また,ポストテンションも しくはプレテンション方式による定着箇所では, 塩分が浸透していても除去することは困難とな る。構造上において修復可能な箇所を見極めて 実施することにより,構造物の長寿命化を図る ことができる。

著者らは PC 橋の大断面を除去することによ る部材挙動や応力変動については、非線形 FEM 解析により精度良くシミュレーションすること が可能であることを確認している¹⁾。また、PC 橋の大断面を修復する方法としては、プレスト レスを有効に利用するため、断面修復材として ヤング係数が母材コンクリートと同等以上で, 収縮量を低減させた高流動コンクリートの検討 を行っている²⁾。

本研究では、プレテンション PC 桁において、 劣化を想定したコンクリート部分をウォーター ジェットによって除去し、高流動コンクリート による断面修復および外ケーブルによりプレス トレスを導入した。PC 桁を、1 年間の暴露試験 を実施し、その間の挙動を把握するとともに曲 げ載荷試験を行った場合のひび割れや部材挙動、 併せて非線形 FEM 解析の整合性について検証を 行った。

2. 実験概要

2.1 試験条件

実験に使用したプレテンション PC 桁の断面 を、図-1に示す。桁長 10.5m,支間 10.0mのス ラブ橋用の桁(JIS A5373)である³⁾。本実験では図 -2に示すように長さ方向に 2000mm 区間を断 面修復の対象とした。また、下面から2段目の PC 鋼より線の周りまで塩化物イオンが浸透し、 露出することが必要な状態であると想定して、

- *1 (社) プレストレスト・コンクリート建設業協会 工修 (正会員)
- *2 (独)土木研究所 技術推進本部構造物マネジメント技術チーム主席研究員 工博 (正会員)
- *3 (社)プレストレスト・コンクリート建設業協会 工博 (正会員)
- *4 (社) プレストレスト・コンクリート建設業協会 (正会員)

写真-1 暴露状況

下縁から120mmまでコンクリートの除去を行う こととした。さらに,劣化したことを模擬する ために断面修復部内の最下段の PC 鋼より線の 一部を切断して除去した。断面修復材には,逆 打ち工法でも充てん性,一体性が確保できる高 流動コンクリートを使用した²⁾。断面修復後には, 外ケーブルによる補強を行った。外ケーブルは, ¢11.1mmPC 鋼より線を片側7本の合計14本配 置した。耐力および断面修復部の下縁応力が断 面修復前と同等程度まで回復することができる ように,事前解析を実施して片側490kNの緊張 力を導入した。また,偏向具にはナイロン樹脂 を使用し,鋼製と比較して外ケーブルの摩擦を 小さくする構造とした。

本実験では、補修・補強を行っていない健全 な試験体(case1)、断面修復および外ケーブルによ って補強した試験体(case2)の2種類を比較した。

2.2 試験方法

PC桁製作から曲げ載荷試験までの経過日数お よび母材コンクリートと断面補修材の材齢を表 -1に示す。補修・補強を行う試験体は、製作 から1年以上経過した試験体を用いて検証を行 うこととした。断面修復を実施してから、写真 -1の状態で1年間の暴露試験を実施した。そ の後、図-3に示すように支間長10.0m、載荷ス パンを3.0mとし、断面修復部より外側に載荷位 置を設定し、曲げ載荷試験を実施した。

2.3 測定項目

たわみ、コンクリートひずみ、PC 鋼材ひずみ を測定し、PC 桁の長期挙動を把握する。また、 曲げ載荷試験では、暴露試験時の測定項目に追 加して、ひび割れおよび打継目の目開きの計測

3. 非線形 FEM 解析

実験結果の評価を目的として,経時変化および曲げ載荷試験について非線形FEM解析を実施した。以下に解析モデルおよび条件を示す。

3.1 メッシュ分割

図-4にコンクリートのメッシュ分割図を示 す。メッシュの大きさは、はつり部分で幅 50mm× 高さ 30mm とし、他の部分よりも細かく分割し た。コンクリートは平面応力要素でモデル化を 行った。

3.2 構造解析モデル

図-5に構造解析モデルを示す。内ケーブル は埋込鉄筋要素とし、コンクリートと完全付着 モデルとした。一方、外ケーブルはトラス要素 でモデル化した。偏向部の拘束条件は、鉛直方 向に固定、水平方向には自由とした。非線形 FEM 解析は、PC 桁自重、PC 鋼材緊張、ウォーター ジェットによるはつり、断面修復、外ケーブル 緊張、クリープ・収縮による経時変化および曲 げ載荷試験の状態を非線形 FEM 解析によってシ ミュレーションした。

3.3 材料の構成モデルおよび材料特性

(1) コンクリート

本解析においては、圧縮側コンクリートの応 カーひずみ関係はバイリニアでモデル化し、破 壊基準については Drucker-Prager の破壊基準を 用いた。また、引張側コンクリートの応カーひ ずみ関係はコンクリート標準示方書の 1/4 モデ ル、ひび割れは Smeared Crack モデルを適用した。 コンクリートの引張強度は、部材寸法および収 縮の影響を考慮して、コンクリート標準示方書 によって算出した曲げひび割れ強度を用いるこ

(2) PC 鋼より線

プレテンション方式による PC 鋼より線の応 カーひずみ関係はトリリニアモデルとした。曲 げ載荷試験時のプレストレス力はクリープ・乾 燥収縮による減少を考慮して,引張強度の 60% とした。

(3) クリープ係数および収縮度

材齢に伴う母材コンクリートおよび断面修復 材の収縮度およびクリープ係数をコンクリート 標準示方書によって算出した結果を,図-6お よび図-7に示す。

4. 実験結果

4.1 暴露試験結果

case2のウォータージェットによるはつり深さ は,平均で141mmであった。

外ケーブルによるプレストレス導入時のコン クリートの力学的特性を,**表**-2に示す。断面 修復材の圧縮強度は,母材コンクリートの106%, ヤング係数は90%程度であった。プレストレス 導入による中央断面のひずみ変化量について実 測値および解析値を図-8に示す。なお,解析 には表-2に示す物性値を用いた。解析値と計 測したひずみ変化量は,比較的良く整合してい ることが分かる。また,ひずみ変化量がほぼ直 線であることから,既設部と断面修復部の一体 性が確保されていることが分かる。

支間中央における上縁から 50mm の母材コン クリートおよび下縁から 77mm 断面修復材のひ ずみについて,断面修復直後を初期値としたと きの長期挙動と非線形 FEM 解析結果を,図-9 に示す。また,図-10に断面修復部の最下段 のPC 鋼より線ひずみ,図-11に外ケーブル緊 張前を初期値としたときのたわみの計測値と解 析結果を示すが,比較的良く整合していること が分かる。図-12に中央断面の試験体製作時 から暴露試験後の応力分布を示す。断面修復後 にプレストレスを導入した状態では,上縁で 0.3N/mm²,下縁で 8.1N/mm²であったが,曲げ載 荷試験時には,上縁で 1.5N/mm²,下縁で 8.4N/mm²の応力分布になったと推定される。

4.2 曲げ載荷試験結果

曲げ載荷試験時のコンクリートの力学的特性 を表-3に示す。断面修復材の圧縮強度は、母 材コンクリートの 125%程度でありヤング係数 はほぼ同程度であった。

casel の無補修・無補強の試験体と case2 の断面修復および外ケーブルによる補強を行った試験体について、載荷荷重と中央たわみの関係を図-13に示す。ひび割れ発生荷重は casel で175kN, case2 で170kN とほぼ同程度であった。
一方、解析によるひび割れ発生荷重は160kN で

表-2 材料試験結果(プレストレス導入時)

あり比較的精度良く推定できている。その後の たわみ挙動も case1 と case2 では大差なく,残留 変位においても同等程度であることから断面修 復前の PC 桁と同程度の性能まで回復している ことが分かる。また,解析結果においても,比 較的良く整合性がとれていることが分かる。

中央断面における載荷荷重と圧縮縁コンクリ ートひずみとの関係を図-14,最下段のPC鋼 より線ひずみとの関係を図-15に示す。本実 験では, case1 と case2 においても同程度のひず み挙動を示す結果となった。また,解析結果と のひずみの整合性については,コンクリートは 比較的とれていることが分かる。PC鋼より線は, ひび割れ発生まではとれているが,それ以後は 誤差が生じている。これは,PC鋼より線とコン クリートを完全付着モデルと仮定していること が要因と考えられ,今後の課題である。

ひび割れ図を図-16に、下面の総ひび割れ 幅と荷重の関係を図-17および下面のひび割 れ本数および平均ひび割れ間隔を表-4に示す。 これらの結果から、ひび割れ本数、ひび割れ間 隔および総ひび割れ幅は、case2の断面修復桁が 若干大きくなっている。しかし、ひび割れの分 散性や性状に大きな差は見られない事から、本 試験に使用した修復・補強方法は、PC桁の性 能を低下させる結果には至らないことが分かる。

また、断面修復を実施した場合に、打継目に おける付着切れが一般的には懸念される。本実 験では、事前試験²⁾において母材コンクリートと 断面修復材の間には高い付着性能を有している ことを確認している。その結果、曲げ載荷試験 において、打継目にひび割れが生じなかったの は、母材コンクリートと断面修復材の付着強度 が断面修復材の曲げひび割れ強度より大きかっ たことが考えられる。水平打継目については、 曲げひび割れが水平打継目まで進展した一部で は、打継目に沿ってクラックが発生したが、図 -18に示す中央断面におけるひずみ分布はほ ぼ最大荷重時近傍までほぼ直線であることから 一体性は損なわれていないことを確認している。

5. まとめ

本研究により得られた知見を以下に示す。

- (1) 断面修復を行った PC 桁に対して,外ケー ブルによりプレストレスを導入する場合,断 面修復部の材料物性を考慮した FEM 解析を 行うことにより,断面修復部の緊張力導入時 に発生する応力を推定することが可能であ る。
- (2) 断面修復部の乾燥収縮やクリープの材料 特性を適切に把握することができれば暴露 中の部材挙動について非線形 FEM 解析によ り比較的精度良く推定することが可能であ る。
- (3) 曲げ載荷試験時の部材挙動も非線形 FEM 解析により推定が可能である。
- (4) 本試験の断面修復および外ケーブルによ る補強方法では、一体性が確保され、健全桁 と比較してたわみやひび割れ性状に大差な く、健全桁と同等程度の性能に回復すること ができた。

劣化した P C 桁を補修・補強する場合に,構造物の性能の目標水準を満たすために,断面除去や修復方法,補強方法などの様々な検討を行う必要がある。今回の実験で示した方法もその中のひとつではあるが,補修・補強を行うことによる全体挙動への影響を非線形 FEM 解析で推定することが可能であることが検証された。

6. おわりに

本研究は,独立行政法人土木研究所技術推進 本部構造物マネジメント技術チームとプレスト レスト・コンクリート建設業協会による「PC橋 の改造技術に関する共同研究委員会」の活動の 一環として実施したものである。本研究の実施 にあたり東北大学の久田真助教授をはじめ委員 の方々に貴重なご意見を頂きました。ここに記 して感謝の意を表します。

参考文献

1) 中村定明,中村雅之,藤田学,久田真:はつ

りによる PC 桁の変形挙動解析とその検証, コンクリート構造物の補修,補強,アップグ レード論文報告集,第5巻,pp.359-366, 2005.10

- 2) 谷口秀明,渡辺博志,手塚正道,藤田学,久 田真: PC 橋の大規模な断面修復を対象とし た高流動コンクリートに関する検討,コンク リート構造物の補修,補強,アップグレード 論文報告集,第6巻,pp.209-216,2006.10
- プレストレスト・コンクリート建設業協会: 道路橋用橋げた設計・製造便覧 JIS A5373-2004, 2004

表-4 ひび割れ本数および間隔