論文 SRC 柱と CFT 柱の特性を考慮した新形式の鉄骨コンクリート柱の 耐力と靭性

福原 実苗*1,南 宏一*2

要旨:SRC柱の主筋を除き,耐震性,施工性および経済性を向上させ建設コスト面を考慮 した構造として,SRC柱とCFT柱の特性を考慮した新しい形式の鉄骨コンクリート(SC) 柱を提案する。提案する柱の形状は,鉄骨を内蔵し,かつ,柱頭・柱脚部のみに鉄骨箱形 部材を被覆したものある。本論では,提案する背景,実験計画,実験結果について述べ, 耐力および靭性の評価について実験的,理論的な検討を行った。

キーワード:鉄骨コンクリート,SRC柱,CFT柱,合成構造,開発研究

1. はじめに

日本の国土交通省が毎年実施している建築動 向統計調査^{1)~2)}による10~15 階建築物の構造 別着工棟数の推移を図-1 に,10~15 階建築物の 地域別の着工棟数の推移を図-2 に示す。ここで 示す対象建築物数は,2005 年1月~2005 年12 月の集計を2005 年計としている。

図-1,図-2に示すように、日本における建築 物の建設事情が一変してきている。特に、図-2 に示す 10~15 階建の中高層建築物に採用され る構造形式の推移に着目すると、従来、活用さ れていた SRC 構造が急激に減少するのに対し て、RC 構造が SRC 構造の減少分を補う形で急 激に採用されていることである。

特に,10~15 階建の中高層建築物は,2000 年(平成12年)以降 SRC 構造は減少し続けてい るにも関わらず,RC 構造については増加して いる。従来,6 階以上の中高層建築物は,SRC 構造と行政指導が行われ,SRC構造が活用され てきた。しかし,2000年(平成12年)に建築基準 法の改正にともなって,限界耐力法,性能設計 法の確立,および RC 構造の鉄筋およびコンク リートの材料の高強度化,さらに免震,制震技 術の導入にともなって十分に適正な構造計画お よび構造設計が,RC 構造で可能となり,RC 構 造の中高層建築物が比較的容易に建設できるようになったことが、高層建築物の構造形式として RC 構造採用される理由の1つとしてあげられる。

このような状態になっている第一の要因として, SRC 構造は RC 構造と比べて, 鉄骨を使用 することによって材料および施工の両面におい てコスト高になり,本来の SRC 構造が RC 構造

*1 福山大学 工学部建築学科 研究員 修士(工学) (正会員)

*2 福山大学 工学部建築·建設学科 工博 (正会員)

と比較して,保有する優れた力学的特性の反映 ができない状況になっていることがあげられる。

そこで,鉄骨を使用することの最大の利点を 生かして,鋼材の大半を鉄骨で構成し,補助的 に鉄筋を使用する鉄骨コンクリート(以下,SC と称す)構造を, SRC 構造の復権を意図した新し い構造システムの鉄骨コンクリート構造の特性 について基礎実験を行う。

2. 実験計画

2.1. 実験概要

本研究では,表-1に示す6体の試験体を計画 した。変動因子は、載荷する軸力比、柱頭・柱 脚部の箱形鋼管の有無および厚みである。試験 体寸法,十字形鉄骨,せん断補強筋,主筋など は全て共通とした。試験体形状および寸法を図 -3に示す。なお、主筋はせん断補強筋の固定用 とし、耐力に換算しないため、4-D6と大変軽微 なものとし、 箱形鋼管部のせん断補強筋は配筋 しないものとした。

2.2 載荷方法

載荷は、図-4に示す福山大学設置の建研式載 荷装置を用いた。鉛直ジャッキは圧縮 4MN,水 平ジャッキは 2MN を用い, 柱頭の水平変位制 御とする。加力サイクルは,変位部材角 R(= δ/H)による変位制御として, R=0.25%rad. を正負1サイクル載荷を行い、0.50%rad.を正負 2 サイクル行う。その後, 0.50%rad. ずつ増加さ せる毎に各2サイクルずつ繰返し載荷を行い, R=5.0%rad.まで載荷を行う。また、最大耐力の 70%に耐力が低下した場合,または軸力保持が 不能になった場合,その段階で実験を終了する。

2.3 材料特性

材料試験をした結果,表-2にコンクリート強 度の推移を図-5 に鋼材の応力-ひずみ関係を示 す。耐力評価に用いるコンクリート強度は、実 験前(材齢 45 日), 後(材齢 51 日)の平均値 GB =36.1 N/mm²とした。また、鋼材の降伏点は、

図-3 試験体形状および断面形状

実験装置 (単位:mm)

表-1 実験計画一覧

	試験体番号	断面形状 (mm)	H/D	軸力比 n	Fc	主筋	せん断補強筋		鉄骨	箱型鋼管				
試験体名						本数−径		pw	十字形	厚 ts	長さ ls			
						(材質)	(材質)	(%)	(材質)	(mm)	(mm)	(材質)		
A-1	SC00-00-3C	300 x300	3 ·	+0.3			□-D6@50 (SD295A)	0.42	BH-240x100x6x9 (SS400)	-				
A-2	SC15-06-3C									6	150	(88400)		
A-3	SC15-09-3C				20	4-D6				9	150	(33400)		
A-4	SC00-00-6C			+0.6	30	(SD295A)					-	-		
A-5	SC15-06-6C									6	150	(88400)		
A-6	SC15-09-6C									9	150	(33400)		

註1) 軸力比 n= N/(b·D· σB+sA·s σy)

註2) 箱形鋼管のある試験体(A-2,A-3,A-5,A-6)については, せん断補強筋は箱形鋼管内に配筋しない

主筋(D6)は 417.5 N/mm², せん断補強筋(D6)は 406.7 N/mm², 十字形鉄骨と箱形鋼管の鉄骨は同 じものを用い t6 は 283.3 N/mm², t9 は 305.0 N/mm²となった。

表-2 コンクリート強度

材齡	(日)	7	28	35	45	51	
圧縮強度	(N/mm^2)	26.4	29.1	34.8	38.1	35.3	
割裂強度	(N/mm^2)	2.0	2.3	2.6	2.1	2.1	

3. 実験結果

3.1 破壊状況

終局時の破壊状況を,図-6に示す。箱形鋼管 がない柱(A-1, A-3)は,せん断ひび割れが発生 したのちひび割れが増大し,コンクリートの圧 壊・剥離により,破壊する。箱形鋼管で補強し た柱は,箱形鋼管をつけることにより,柱頭・ 柱脚部の剛性が高くなり,鋼板厚_{st}が大きくな るほど広範囲にせん断付着ひび割れや社長力ひ び割れが発生した。また,箱形鋼管を取付けた 試験体は,箱形鋼管とコンクリートの境目から, ひび割れが発生し拡大していった。

また,軸力比が大きい試験体は,内蔵する十 字形鉄骨に沿った付着ひび割れが,早期に発生 し,ひび割れが拡大しコンクリートの剥離が大 きくなり,鉄骨が観察された。しかし,箱形鋼 管を取付けた試験体は,柱頭・柱脚部のコンク リートを拘束しているため,十字形鉄骨による コンクリートの拘束力が低下せず,柱頭・柱脚 部の箱形鋼管内のひび割れが少なかった。そし て,鉛直方向の縮みは小さく,終局部材角は大 きくなっている。

3.2 履歴性状

図-7 に履歴性状および鉛直変位を示す。荷重

	箱形鋼管なし	箱形鋼管 st=6	箱形鋼管 st=9			
n=0.3	A-1	A-2	A-3			
Q_{max}	463 kN	495 kN	519 kN			
R_{u}	5.0 %rad.	5.0 %rad.	5.0 %rad.			
n=0.6	A-4	A-5	A-6			
Q _{max}	456 kN	500 kN	542 kN			
R_{u}	2.0 %rad.	2.5 %rad.	2.5 %rad.			
ここで, Q _{max} : 最大耐力(kN) (正負の最大値とする) R _u : 最終部材角(%rad.)						

図-6 終局時の破壊状況

-変形曲線では,縦軸に水平荷重 Q (kN),横軸 に変位部材角 R (%rad.)を示す。鉛直変位の関係 では,縦軸に水平荷重 Q (kN),横軸に鉛直変位 δ_N (mm)と縦軸に鉛直変位 δ_N (mm),横軸に変位 部材角 R (%rad.)とを共に示し,圧縮力による縮 みをマイナスとした。また,鉛直変位 δ_N が 9mm の時,鉛直ひずみ度は 1%となる。

同一軸力比において, SC 柱の箱形鋼管の厚さ が厚いほど,最大耐力は大きくなっているが, 履歴性状および変形性能において,箱形鋼管の 厚みの違いによる影響は見られなかった。特に, 軸力比 n=0.3 においては,箱形鋼管をつけるこ とにより最大耐力時の変位部材角が大きくなり, 最大耐力以降の耐力低下が小さく抑えられた。 また,高軸力を受ける試験体において,箱形鋼 管をつけることにより,鉛直変位小さく抑えら

れており,軸力支持能力を維持し,最終部材角 が大きくなっている。

3.3 鉛直変位の累積状況

図-8に除荷時に生じている鉛直変位 δ_N (mm) と載荷の繰返し回数 K を示す。横軸の各サイク ルの繰返し回数 K は,正載荷時を 1/2,同一部 材角の負載荷時を 2/2 とカウントしてある (R=+0.25%rad.1 回目は K=1/2, R= - 0.25%rad.1 回目は K=2/2, R=+0.5%rad.1 回目は K=3/2 とな る)。また,縦軸は鉛直変位 δ_N が 9mm の時,鉛 直ひずみ度は 1%となる。なお,<u>A-1</u>のようにア ンダーライン付で表しているのは,A-1 から A-3 試験体の鉛直変位を拡大して表現したもので, 右側の軸にて表す。

軸力比の大きさに関わらず,箱形鋼管がない ものより箱形鋼管のあるもの,箱形鋼管厚の厚 いものほど,鉛直方向ひずみの蓄積は小さくな る事が認められた。また,軸力比 n が 0.6 の試 験体では,コンクリートの剥離やせん断補強筋 の破断,鉄骨の座屈により急激に鉛直変位が進 行するが,K=18/2 において箱形鋼管を取付けて いる試験体(A-5, A-6)は,箱形鋼管を取付けて いない試験体(A-4)の鉛直方向ひずみの 65%程 度となっており,箱形鋼管を取付けることによ

繰返し回数 K

り軸力保持能力の向上が見られた。

3.4 変位部材角 R=1.5%rad.における鉄骨フラ

ンジのひずみ状況

図-9に変位部材角 R=1.5%rad.における鉄骨フ ランジのひずみ状況を示す。横軸は、ひずみ(μ) を示す。また、引張ひずみをプラス、圧縮ひず みをマイナスで表し、正載荷時に生じたひずみ は白、負載荷時に生じたひずみは黒で表してい る。鉄骨フランジのゲージの高さ方向の位置は、 柱脚部から高さ 25mm([A],[B]:柱脚部), 225mm([C],[D]:柱脚側柱内法長さの 1/4 部) である。そのため、箱形鋼管の取付く試験体 A-2, A-3 および A-5, A-6 では、[A],[B]は、箱形鋼 管内部である。

軸力比nが0.3の試験体(A-1~A-3)において

は、柱脚部ではそれぞれ圧縮と引張に抵抗して いるため、中立軸位置は鉄骨部中央付近に位置 している。また、柱脚側 1/4 部では圧縮ひずみ 側のみに作用しており、中立軸位置が中央付近 より外にある。また、箱形鋼管の取付いていな い試験体(A-1)は、柱脚側 1/4 部の鉄骨フランジ が降伏し局部座屈しているためである。

軸力比 n が 0.6 の試験体(A-4~A-6)において は,作用軸力が大変大きいため全体的にひずみ が大きい。特に,箱形鋼管の取付いていない試 験体(A-4)では,圧縮ひずみが卓越し変位部材角 R が 1.5%rad.で鉄骨フランジは柱脚部から柱脚 側 1/4 部まで座屈をしている。また,箱形鋼管 を取付けた試験体については,鉄骨フランジが 局部座屈している。

全試験体とも柱脚部では、材料試験により確認した降伏ひずみに達していることから、鉄骨部の耐力は必要な性能を満たしていることが分かる。

3.5 箱形鋼管のひずみ状況

図-10 に箱形鋼管のゲージの取付け位置を示 す。図-10 (a)の丸印部の箱形鋼管のひずみ状況 を図-11 に箱形鋼管厚 st が 6mm の試験体(A-2, A-5)について示す。縦軸にひずみ (µ), 横軸に 図-10 (b)に示す横方向の位置 (mm)を示す。ま た,降伏ひずみは 2000µ とする。

まず,変位部材角R=2.5%rad.までを比較して

みると、軸力比の高い試験体 A-5 試験体のひず みが大きくなっており、軸力比 n が 0.6 試験体 が軸力比 n が 0.3 の試験体より早期に箱形鋼管 が応力を負担し、内部のコンクリートを拘束し ていることが分かる。一方、軸力比 n が 0.3 の A-2 試験体は、変位部材角が進むにつれ、箱形 鋼管に力が加わっていることが分かる。また、 両試験体の箱形鋼管のひずみとも、最大ひずみ が降伏ひずみの 1/2 程度であり、十分に箱形鋼 管には余力があり、箱形鋼管を柱頭・柱脚部に 取付けることにより、モーメントの大きくなる 柱頭・柱脚部のコンクリートを鋼管厚 st が 6mm の薄い鋼管で有効に拘束していることが分かる。

4. 終局耐力の評価

SRC 部材では鉄骨部分と RC 部分の付着力は

極めて小さいことから,それぞれ別々に曲げモ ーメントとせん断力に抵抗する。SC 部材におい ても同様になることから,文献 3), 4)にもとづ いて数式化して表すと,

> $Q_U =_c Q_U +_s Q_U$ (1) $_c Q_U : コンクリート部分の終局耐力$ $_s Q_U : 鉄骨部分の終局耐力$

となる。ここで,SRC 部材と同様にコンクリー ト部分,鉄骨部分の終局耐力は,破壊モードを 考慮して求められ,それぞれ曲げ耐力とせん断 耐力のいずれかの小さいほうの耐力の累加によ って求められ,

$${}_{c}Q_{U} = min({}_{c}Q_{sU}, {}_{c}Q_{bU})$$
⁽²⁾

(3)

 $sQ_U = min(sQ_{sU}, sQ_{bU})$ Q_{sU} :終局せん断耐力 Q_{sU} :終局曲ば耐力

$$Q_{bU}$$
:於同田() 时)

となる。

また,終局せん断耐力の評価において,箱形 鋼管による効果を(1)箱形鋼管を取付けた試験 体の破壊状況が,柱頭・柱脚部の剛性が高くな り短柱に近い壊れ方をしている,(2)箱形鋼管を 取付けていない試験体に対し,箱形鋼管を取付 けた試験体の最大耐力が10~20%程度大きくな っている,これらのことより箱形鋼管部を剛端 と仮定し,柱内法長さを 600mm として算定を 行った(scQsu^{*2}と表す)。

実験結果と計算値の比較を表-3 に, N-Q 相関 図を図-12 に示す。上記の耐力評価方法により 耐力を評価することにより,表-3 に示すように 実験値/計算値が 1.20 程度となり,安全側に評 価されているが, SC 柱の耐力の評価としては, 更なる詳細な検討が必要であると考える。

5. 結論

SC 柱の柱頭・柱脚部の箱形鋼管は,局部座屈 は生じておらず,板厚が薄くても十分にコンク リートを拘束していると考えられる。また,箱 形鋼管の板厚は,厚いほど最大耐力は大きくな るが,変形性能およびエネルギー吸収能力に大 きな違いがみられず,板厚_{st}が 6mm でも十分

	軸力比 n	最大耐力				終局	耐力	実験値	/計算値	
試験体名		Qmax (kN) [Rmax (%ra			ad.)]	Qu (kN)		Qexp/Qu		
		Е		負		Ē	負	Ē	負	
A-1		463	[1.0]	454	[1.0]	360	360	1.29	1.26	
A-2	+0.3	491	[2.0]	495	[1.5]	414	414	1.19	1.20	
A-3		514	[2.0]	519	[1.5]	414	414	1.24	1.25	
A-4		456	[1.0]	424	[0.5]	360	360	1.27	1.18	
A-5	+0.6	487	[1.0]	500	[2.0]	414	414	1.18	1.21	
A-6		487	[1.0]	542	[2.0]	414	414	1.18	1.31	
2000 - 400000 - 4000 - 4000 - 4000 - 4000 - 4000 - 4000 - 4000 - 4000 -	●, O:A-1 および A-4 : BOX なし ■, □ : A-2 および A-5 : BOX 厚=6mm ▲, △ : A-3 および A-6 : BOX 厚=9mm 黒塗り : 正荷重時, 白抜き : 負荷重時									
2000	n=0.6 A-5 cQ _{bU} A-4 A-6 cQ _{SU} n=0.3 A-2									
0		100	_s Q _{sµ} 200	_s Q _{bµ}	_{sc} Q _s 300	su scQ _{sU}	² s _c Q ₁	500 C		
-2000	-2000 :SC 終局曲げ耐力 ::Q _{bU} <td::sc td="" 終局せん断耐力(箱形鋼管の考慮なし)<=""> ::Q_{bU}⁻² <td::sc td="" 終局せん断耐力(箱形鋼管の考慮なり)<=""> :Q_{bU} <td::c :q<sub="" 終局曲げ耐力="">bU :Q_{bU} <td::s :q<sub="" 終局曲げ耐力="">bU :S 終局曲げ耐力 :S 終局曲げ耐力 :S 終局せん断耐力</td::s></td::c></td::sc></td::sc>									
図-12 N-Q 相関図										

表-3 終局耐力の評価

に効果があると考える。

現段階では,箱形鋼管の取付方法を改善する 必要はあるが,変形能力やエネルギー吸収能力 に優れた性能を示しており,合理的な構法の可 能性が高い。

また,提案した耐力評価方法は,安全側に評価しているが,力学的特性を更に明確にし,詳細に検討を行う数式化する必要がある。

参考文献

- 財団法人 建設物価調査会:建築統計年報, 第 55 表, 2005.09
- 財団法人 建設物価調査会:建築統計年報, 第 59 表, 2005.09
- 若林實,南宏一,谷資信,平野道勝:新構造
 学体系 42 合成構造の設計 4 章 鉄骨鉄筋
 コンクリートの設計, pp.83-209, 1986.8
- 4) 日本建築学会:鉄骨鉄筋コンクリート構造 計算規準・同解説,5章 保有水平耐力の 検討,2001年改訂 第5版第3刷,pp.25-31, 165-194,2001.3
- 5) 福原実苗,南宏一:新しい形式の鉄骨コン クリート構造の開発研究,日本建築学会大 会学術講演集,pp.1073-1074, 2006.9