論文 遠心成形 PCa 柱 - 鉄骨梁部分架構における接合部挙動

岡安 隆史*1・吉松 敏行*2・岡村 信也*3・益尾 潔*4

要旨:角形及び円形の遠心成形中空 PCa 柱と H 形鋼梁で構成される柱梁接合部の弾塑性性 状を把握することを目的として,十字形及びト字形部分架構実験を実施した。その結果,既 往の接合部鋼管耐力式と鋼管内部コンクリート耐力式を累加した柱梁接合部パネルのせん 断終局耐力は,十字形架構では実験値と良い対応を示すことが確認された。 キーワード:遠心成形 PCa 柱, PRC 杭,混合構造,柱梁接合部

1. はじめに

遠心成形プレキャストコンクリート柱(以下, PCa 柱と呼ぶ)と鉄骨梁からなる混合構造(図 -1)は鉄骨構造と同等な短い工期で施工が出来 ると共に経済性に優れた構造である。この PCa 柱はプレストレストコンクリート杭(既製杭) の製造ラインを利用し,遠心成形によって製造 された円形または角形の中空断面の柱であり, 接合部鋼管を介して H 形鋼梁と接合されている。 同様の構造に関する報告¹⁾⁻⁴⁾はあるが,柱梁接 合部の耐力評価式は確立されていない。そこで 本構造における検討項目として, 梁フランジ 引張力に対する接合部鋼管の局部面外曲げ抵抗 機構, 接合部鋼管上下端部の柱軸方向(鉛直) コンクリート支圧抵抗機構, 柱梁接合部パネ

> 遠心成形 PCa柱 受けていた。 接合部鋼管 (パネル) 図-1 構法概要(円形柱)

ルのせん断抵抗機構を取り上げた。 に対して は既報5,6で接合部鋼管の左右に取り付く梁フ ランジプレートを両引きする局部引張実験によ り接合部局部の引張耐力を検証し,鋼管の局部 面外変形が十字形架構に与える影響を検証した。 本論では, , を検討することを目的として 部分架構実験を実施した。

- 2. 実験概要
- 2.1 試験体

試験体は,円形もしくは角形断面中空 PCa 柱 とH 形鋼梁で構成されるト字形及び十字形部分 架構で 縮尺を実大の1/2とした合計4体である。 試験体諸元を表-1 に,架構形式と想定破壊形式 を図-2 に,試験体形状を図-3 に示す。PCa 柱製 作は実機同様,接合部鋼管も一緒に型枠内へ収

*1 鹿島建設(株) 技術研究所主任研究員 工修 (正会員)
*2 鹿島建設(株) 建築設計本部統括グループリーダー 工修
*3 (財)日本建築総合試験所 構造物試験室室長代理 工修 (正会員)
*4 (財)日本建築総合試験所 構造部長 工博 (正会員)

試験体名			E-C	E-R	I-C	I-R		
架構形状				字形	十字形			
柱断面形状			円形	角形	円形	角形		
想定	破壊	形式	局部支	圧破壊	接合部パネルせん断破壊			
	外径 _c D _c [mm]		400	300	400	300		
	肉厚 ctc[mm]		90	70	90	70		
柱	配 筋	PC 鋼棒	8- 11.2	6- 11.2	8- 11.2	6- 11.2		
11		主筋	8-D29	6-D29	8-D29	6-D29		
		せん断補 強筋	8-D29	6-D29	8-D29	6-D29		
位合动	断面		-400x6	-300x6	-400x3.2	-300x4.5		
なっか。 細管	長さ[mm]		550	450	550	450		
剄 日	鋼種		SM490		SS400			
ダイア フラム	P 幅 x 板厚[mm]		120x22	142x22	100x22	85x22		
梁	部材		BH- 400x150x16x22	BH- 300x150x16x22	BH- 400x150x16x22	BH- 300x150x16x22		

表1 試験体諸元

(共通事項)部分架構階高:1800mm,梁スパン:2800mm,帯筋 5.5@50

めて遠心成形を行なっており, PCa 柱と接合 部鋼管の外面は一致する。なお, 接合部鋼管 と PCa 柱の間には頭付きスタッドなどを設 けておらず,梁せん断力による鉛直方向応力 は,鋼管板厚分の埋込み部分のコンクリート 支圧抵抗機構で処理することを想定し試験 体を設計した。特に図-2に示す様に左右の梁 せん断力が逆向きでキャンセルされる十字 形架構よりも、ト字形架構で懸念され、ト字 形試験体 E-C 及び E-R によって局部支圧破壊 を検証する。また柱梁接合部パネルのせん断 抵抗機構は,主に十字形試験体によって検証 する。なお,各試験体ともに接合部鋼管の局 部面外曲げ破壊を避けるため外ダイアフラ ムを配置し,柱部のせん断破壊を避けるため に柱梁接合部を除く PCa 柱の中空部に後詰 めコンクリートを充填した。使用材料の強度 試験結果を表-2に示す。

2.2 実験方法

実験は,柱に一定軸力(軸力比0.05)を導入した。ただし,ト字形は表-3に示す様に梁せん断力を上回る様に,サイクルごとに異なる定軸力を導入した。柱の反曲点位置をピン・ローラー支持し,梁の反曲点位置にせん断力を載荷した(図-3)。また,十字形試験体は梁の加力

点変位を左右で逆対称となるよう制御した。載 荷履歴は梁加力点変位をスパンで除した層間変 形角Rが±2.5,5,10,20,30,40/1000rad.の正負繰 返し載荷を2サイクルずつ行い,その後,正加 力方向に100/1000rad.まで単調載荷した。変位は

表-3	柱軸力-	
10 0	11+4/	見

サイクル	1~4	5,6	7 以降
E-C	370* ¹	588* ²	686* ²
E-R	300^{*1} 392^{*2} 441^{*}		
I-C		370* ¹	
I-R		300*1	

単位[kN]

*¹:0.05A_c·Fc(A_c:柱断面積,Fc:85MPa) *2:梁せん断力を上回る値として設定

各部材の変形が分離できるように 計測し, ひずみは接合部鋼管のパ ネル部を中心に計測した。

3. 実験結果

3.1 実験経過

実験終了後の各試験体の損傷状 況を写真-1 に,梁せん断力 Q_b-層間変形角 R 関係を図-4 に示す。 また,図-4に実験中に観察された 主な発生現象と限界部材角 R_uを 併記する。R_uは,耐力が最大耐力 の80%に低下した時の部材角と定 義し,包絡線の谷間は各サイクル の第1ピーク荷重時を結んで算出 した。実験経過を以下に記述する。

ト字形の試験体 E-C E-R では, 各々R=1/100,2/100rad.に接合部鋼 管の上下端面とコンクリート間に 載荷前から存在した 0.20~0.45mm の隙間が閉鎖し,閉鎖直後から PCa 柱コンクリート支圧面におい てコンクリートの圧壊が発生した が、圧壊後も荷重低下は無かった。 続いて R=1/100,1.4/100rad.時に鉄 骨梁の引張側及び圧縮側のフラン ジが降伏し,R=3.9/100,1.6/100rad. 時に接合部鋼管パネル部がせん断 降伏した。その後,試験体 E-C は R=6.7/100rad.時に最大耐力に達し た後, R=7.5/100rad.時に上部 PCa 柱のせん断破壊が発生した。また

表-2 使用材料の強度試験結果

(a) コンクリート								
使用試験体	使用部位	B [N/mm ²]	[× 10 ⁻³]	E _c [N/mm ²]				
共通	充填コンクリート	64.8	3.22	32.8				
E-C , I-C	法心 成取 ρC₀ 材	89.2	2.93	38.8				
E-R , I-R	速心成形 PCa 性	84.3	2.91	36.4				

B:上緬强度, 時ひすみ,E。:ヤング係数 (注) c0 •

((b)) 釒	畄7	材

使用	使用	呼び名		y a	u 2	伸び
試験体	部位	(利	重別)	$[N/mm^2]$	[N/mm ²]	[%]
TT / Z	PC 鋼棒	11.2	SBPDN 1275/1420	1454	1506	10
兴进	帯筋	5.5	TB490	595	660	7
	主筋	D29	SD390	446	633	21
共通	梁 ダ 1アフラム	PL22	SM490	343	532	28
	梁ウェブ	:ブ PL16		362	551	26
E-C		PL6	SM400	415	594	32
E-R	接合部鋼	PL6	5101490	398	531	35
I-C	管	PL3.2	55400	315	382	46
I-R		PL4.5	55400	334	421	46

(注) v:降伏応力度, u:引張強さ

[試験体 E-C]

[試験体 E-R]

圧壊 パネル部の せん断降伏 鋼管突出し部 の開き²

[試験体 I-R]

写真-1 最終状況

試験体 E-R は R=3/100rad.時に最大耐力に達し, 同時期から接合部鋼管パネル部が座屈し,はら み出すとともに,せん断変形が増大し,内部 PCa 部がせん断破壊したと推察された。ただし,耐 力低下は緩やかで限界部材角 R_uは 10/100rad.と なった。

+字形の試験体 I-C J-R では ,各々R=0.7/100 , 0.9/100rad.時に接合部鋼管パネル部が降伏し , R=2/100rad.時に鋼管パネルがはらみ出すととも に , 同部のせん断変形が増大し , 内部 PCa 部が せん断破壊したと推察された。その後 , 試験体 I-C では R=3/100rad.時に最大耐力に達し ,限界部 材角 R_u は 4.6/100rad.となった。また試験体 I-R では R=2/100rad.時に最大耐力に達し ,限界部材 角 R_u は 6.5/100rad.となった。なお , 内部 PCa 部 の帯筋は,各々,R=1.5/100,3.5/100rad.時に降伏 した。

なお,実験終了後,接合部鋼管を切断し内部 PCa部の損傷状況を観察したところ,試験体 E-C を除く各試験体で,前述したせん断破壊を裏付 けるような斜めひび割れが確認された。 3.2 接合部鋼管パネル部のせん断性状

図-5に示す柱梁接合部パネル部のせん断変形 角 pの推移では,試験体E-R,I-C,I-Rの柱梁接 合部せん断変形角 pがR=2/100rad.以降に急増し ている。また,図-6に示す鋼管パネル部中央位 置のせん断ひずみ pwiの推移でも同様に, R=2/100rad.以降に増加している。これらは上記3 試験体の破壊形式が接合部パネルのせん断破壊 型となったことと符合する。 4. 考察

4.1 柱梁接合部における抵抗機構

本実験では,接合部鋼管上下端面の PCa 部が 圧壊した後も耐力が上昇した。この耐力上昇は, 当初想定した接合部鋼管上下端面に接する PCa 部の支圧抵抗ではなく,鉄骨梁端部からの曲げ モーメントの作用により,接合部鋼管内面と内 部 PCa 部の間に接触圧力が発生することで摩擦 抵抗力が発生したと推察される。この摩擦抵抗 力の定量化は今後の課題であるが,摩擦抵抗力 の発生に伴って,接合部鋼管がせん断抵抗力を 発現するとともに,内部 PCa 部は,圧縮ストラ ットを形成してせん断抵抗力を発現したと考え られる。

4.2 接合部せん断終局耐力

接合部せん断終局耐力Q_{pu}は,接合部鋼管のせ ん断終局耐力Q_{psu}と内部PCa部のせん断終局耐力 Q_{pcu}の総和として,式(1)にて求めた。なお,パネ ルゾーンの高さは梁せいと仮定した。

 $Q_{pu} = Q_{psu} + Q_{pcu} \tag{1}$

Q_{psu}は SRC 規準⁷⁾における CFT 構造柱梁接合 部終局耐力式の鋼管寄与分を準用した(表-4 脚 注参照)。Q_{pcu}は岸田⁸⁾による PHC 杭の終局耐力

図-5 接合部パネルのせん断変形

図-6 接合部鋼管パネルのせん断ひずみ

≐≭₣ 全 /★	破壊形式	実験値[kN]	計算值[kN]				梁計算値
言 玑 尚史 144		Q _{bmax} *	Q _{psu}	Q _{pcu}	Q_{pu}	Q _{bpu} *	Q _{bfu} *
E-C	梁曲げ	699	1068 (51%)	1008 (49%)	2076	886	615
E-R	接合部 せん断	390	993 (54%)	829 (46%)	1822	490	415
I-C	接合部 せん断	357	435 (31%)	980 (69%)	1415	295	602
I-R	接合部 せん断	207	625 (44%)	807 (56%)	1432	193	383
 ()の数字は負担割合 *印は梁せん断力換算値 Q_{bmax}:最大荷重時梁せん断力 Q_{pu}:接合部せん断終局耐力 Q_{bpu}:Q_{pu}の梁せん断力換算値 Q_{bfu}:梁曲げ耐力(全塑性)の梁せん断力換算値 			$Q_{psu} = 1.2 (e^{A_s} = A Q_{pcu} = b_e \cdot j (e^{-A_s} = A Q_{pcu} = b_e \cdot j (e^{-A_s} = A Q_{pcu} = b_e - A Q_{pcu} = A $	y/3)・eAs (as/2,As,y:鋼 1 ⁺ 2 ⁺ 3) 115kp・ku(B ⁺ 1657Pw・wy, ・Ac/D, =-1. 0.73(試験体E 0.82(100pt) ^{0.23} 軸鉄筋断面積 :コンクリート :せん断補強貨	[文献7) 管断面積,降伏/ (文献8) +17.7)/(M/(Q•d 3=0.102(_e+ .24(t/D)+1.19, j= -C , I-C), 0.82 , pt = Ag / (4be• , M/Q•d : せん • 圧縮強度, pw 筋降伏応力度,	応力度)+0.115) - `。) =(7/8)•(D-(t/2)) 2(試験体 E-R j), υ断スパン比 :せん断補強領 D:せい,t:	,I-R) 窃比 肉厚

表-4 接合部せん断終局耐力の検討結果

式を準用した(表-4 脚注参照)。ただし,Q_{pcu}は, せん断スパン比 1.5 の実験で検証されたもので あり,今回の柱梁接合部せん断スパン比は 0.5 程 度であるため式の適用範囲外である。接合部せ ん断終局耐力の検討結果を表-4 に,計算値と最 大耐力実験値との比較を図-7 に示す。接合部せ ん断破壊した十字形試験体 I-C, I-R は,最大耐 力実験値が接合部せん断耐力計算値に対して 1.21,1.08 倍となった。しかし,せん断破壊した ト字形試験体 E-R は実験値が計算値を下回り, 同比率が 0.80 倍となった。接合部形状(十字形, ト字形)による低減が必要であると考えられる。

5. まとめ

遠心成形 PCa と鉄骨梁からなる部分架構実験 の結果,接合部鋼管上下端面の PCa 部が圧壊し た後も耐力が上昇することを確認した。よって, 接合部鋼管から PCa 部への応力伝達は,鋼管上 下端面に接する PCa 部の支圧抵抗ではなく,鋼 管と内部 PCa 部間に発生する摩擦抵抗力により 発現した接合部鋼管及び内部 PCa 部のせん断抵 抗力によると考えられる。摩擦抵抗力の定量化 は今後の課題である。

また,接合部鋼管と内部 PCa 部のせん断終局 耐力の既往式を累加した接合部パネルのせん断 終局耐力は,十字形試験体では実験値を安全側 に評価することが確認された。ト字形は実験値 が計算値を下回り,架構形状による低減が必要 であり,その定量化が今後の課題である。

参考文献

- 吉田卓生,富永博夫,大美賀久夫,坂口昇, 斉藤豊,山野辺宏治,榊間隆之:鉄筋コンク リート柱と鉄骨梁で構成される架構(RCSS構 法)の耐力及び変形 (その17 遠心成形コ ンクリートパイル柱),日本建築学会大会学術 講演梗概集,pp.1637-1638,1991.9
- 2) 山田政雄,村上陸太,角 彰,益尾 潔,半
 田健二,瀬川輝夫,久徳敏治:鋼管コンクリ
 ート接合部を持つ柱 PRC 梁 S 構造十字骨組

図-7 終局耐力と最大耐力実験値の比較

み水平加力実験,日本建築学会大会学術講演 梗概集,pp.1881-1884,1993.9

- 村田耕司,小南勝義,東端泰夫,平出亨:遠 心成形プレキャスト RC 柱-鉄骨梁接合部の 力学性状,日本建築学会大会学術講演梗概集, pp.1707-1708,1994.9
- 4) 白頭浩之,林 隆浩,柳沢 学,尾形素臣:
 PRC 柱・鉄骨梁の混合構造に関する研究(その1 予備実験),日本建築学会大会学術講演 梗概集,pp.1253-1254,1998.9
- 5) 岡安隆史,吉松敏行,齋藤一,山本隆広:遠 心成形 PCa柱-鉄骨梁構造に関する実験的研究 その 1.ノンダイアフラム接合部の局部引張性 状,日本建築学会大会学術講演梗概集, pp.1187-1188,2004.9
- 6) 岡安隆史,吉松敏行・斎藤一・福元敏之:遠 心成形 PCa柱-鉄骨梁構造におけるノンダイア フラム接合部の弾塑性性状に関する研究その 1.十字形骨組実験,日本建築学会大会学術講演 梗概集,pp.1101-1102,2003.9
- 7)日本建築学会:鉄骨鉄筋コンクリート構造計 算規準・同解説,2001
- 8) 岸田慎司,堀井昌博,桑原文夫,林静雄:大 口径 PHC 杭のせん断終局強度の計算方法に関 する研究,日本建築学会構造系論文集,第 532 号,pp.103-110,2000.6