論文 極低強度コンクリートを用いた極脆性柱の耐震補強実験

新城 良大^{*1}・山川 哲雄^{*2}・中田 幸造^{*3}・RAHMAN Md. Nafiur^{*1}

要旨: せん断損傷した RC 柱のコンクリート強度は,損傷レベルにも依存するが一般に 小さくなる。一方,現行の耐震診断基準ではコンクリート強度が13.5MPa を下回る建物 は診断基準の適用範囲外となる。本研究ではこのような背景をふまえて,これまで山川 らが提案してきた緊張 PC 鋼棒と鋼板を用いた外部横補強法が有効な耐震補強法となり うるかを確認するために,コンクリート強度 4MPa と 8MPa の柱試験体に外部横補強を 施して水平加力実験を行った。その結果,脆性的な破壊には至らず,優れた靭性能を示 したが,コンクリート強度によっては耐力の上昇に限界があることがわかった。 キーワード:極低強度コンクリート,PC 鋼棒,鋼板,プレストレス

1. 序

山川らは地震被災後の応急補強法や復旧工法 の技術開発を目指して, せん断損傷 RC 柱の応 急補強実験を試みている¹⁾。これまでの実験結 果によると, せん断損傷した RC 柱のコンク リート強度は,損傷レベルに依存するが一般に 小さく,損傷レベル IV²⁾ ではシリンダー強度 (25~28MPa)の10%前後(2~4MPa前後)ま で低下する³⁾。このようなせん断損傷した極脆 性RC柱であっても, PC 鋼棒で外部横補強し, 緊張力を導入して薄鋼板を圧着すれば,部材角 が大きくなるにつれて水平耐力は損傷前の健全 な曲げ強度まで回復し,かつ靱性も確保できる ことがわかっている³⁾。つまり,本補強を施す ことにより,コンクリート強度が2~4MPaま で低下した RC 柱の水平耐力を, コンクリート 強度 25 ~ 28MPa の RC 柱の曲げ強度まで改善 させることが可能ということである。

一方,現行の耐震診断基準ではコンクリート 強度が13.5MPaを下回る建物は耐震診断基準 の適用範囲外となる⁴⁾。極低強度コンクリート を用いたRC柱への耐震補強実験として,例え ば,文献5)によると,コンクリート強度が3MPa のRC柱では,アラミド繊維テープによる巻き 付け補強を施しても,補強効果がほとんど現れ なかったと報告されている。しかし,本補強法 は他の耐震補強法と異なり,PC鋼棒への緊張 力導入による能動的横拘束効果が期待できるた め,極低強度コンクリートのRC柱にも本補強 法を効果的に適用できる可能性がある。

このような観点から,本研究では,1)損傷コ ンクリートを想定して製作した極低強度コンク リートのRC柱に対する本補強法の適用は,せ ん断損傷RC柱への応急補強と同じような耐震 補強効果を発揮させ得るのか否か,2)本補強法 の特徴である能動的な横拘束は極低強度のコン クリート強度を有するRC柱への有効な補強法 となり得るかどうか,を水平加力実験により検 証することを主な研究目的とする。

2. 実験計画

Table 1 に試験体一覧及び実験変数を示す。 試験体は1辺が250mmの正方形断面で柱高さ が500mm(せん断スパン比1.0)である。試験 体は主筋比 $p_g=1.36\%$,帯筋比 $p_w=0.08\%$ の極脆 性柱であり,試験体総数は6体である。試験体 はシリンダー強度 σ_B = 4MPaの試験体4体と, σ_B = 8MPa,35MPaの試験体が各1体(試験体

*1 琉球大学大学院 理工学研究科生産エネルギー工学専攻 工修 (正会員)

*2 琉球大学 工学部環境建設工学科教授 工博 (正会員)

*3 琉球大学 工学部環境建設工学科助手 工修 (正会員)

Table 1 De							
Specimen	R06S-RC4	R06S-NS4	R06S-MS4	R06S-MSt4	R06S-MS8	R06S-MS35	
Elevation M/(VD)=1.0	S00mm						(a) Type 1
$\sigma_{\rm B}$ (MPa)	4.0			7.6	35.4		
N/(bD $\sigma_{\rm B}$)	-	- 1.20			0.63	0.14	
PC bar	-	5.40-@41	5.40-@41	5.40-@41	5.4 \$ -@41	5.40-@41	85
Steel plate	-	460 × 240 × 3.2mm		460×240×12mm	460 × 240 × 3.2mm		(b) Type 2
Initial strain	-	0μ	2450μ	2450μ	2450μ	2450µ	
Common	Column section	Bearing area:1200mm ²					
details	Rebar : 12-D	Fig. 1 Corner block					

名の最後の数字)である。水セメント比は4MPa の試験体が211%,8MPaの試験体が161%, 35MPaの試験体が71%である。

試験体 R06S-RC4 (以後 R06S-は省略する) は、試験体のコンクリート強度を確認するため に,無補強で中心圧縮実験のみを行った試験体 である。残りの試験体は PC 鋼棒と鋼板により せん断補強・横拘束されている。NS4,MS4, MS8, MS35はPC鋼棒を補強間隔41mmで配置 し、コーナーブロックにより鋼板(t=3.2mm)を 柱表面へ直接圧着した。その内,NS4は鋼板が ずれない程度にPC鋼棒を締め付け(200μ程度) だが計算上は0µとして扱う), それ以外はPC 鋼棒に緊張ひずみ2450µ(応力度504.7MPa)を 導入して鋼板を圧着した。鋼板の役割は(1)せ ん断補強,(2)主筋の座屈抑制効果とカバーコン クリートの剥落防止 ,の他に ,(3)本研究では極 低強度コンクリートを用いるため ,コーナーブ ロックの柱表面へのめり込みを防止し、より均 ーな横拘束効果を維持すること,が考えられ る。なお,PC鋼棒に導入する緊張力による支圧 応力度は約9.7MPa(コーナーブロックによる 支圧面積の場合)なり,試験体のコンクリート 強度を上回る。MSt4 では,コンクリートのは らみ出しを完全に防止するために厚さ12mmの 鋼板を使用し、横拘束効果の上限を狙った。な お、この試験体は鋼板が厚いため、鋼板への接 触長さが長いType 2のコーナーブロック(Fig.

Table 2	Mechanical	properties	of ma	terial
---------	------------	------------	-------	--------

Reinfor	rcement	a (mm ²)	σ _y (MPa)	ε _y (%)	E (GPa)		
Ноор	3.7¢	11	650	0.31	208		
Rebar	D10	71	349	0.17	202		
PC bar	5.4¢	23	1103	0.54	206		
Steel plate	t=3.2mm	-	291	0.14	205		
	t=12mm	-	349	0.17	209		
3.7.				1 0			

Notes: a=cross section area, σ_y =yield strength of steel, E=Young's modulus of elasticity.

1参照)を用いた。ちなみに,どちらのコーナー ブロックも支圧面積は1200mm²でほぼ等しい。

各柱面のPC鋼棒にはひずみゲージを貼付し, 緊張ひずみの管理を行った。使用した鋼材の機 械的性質を Table 2 に示す。

加力は建研式加力装置により一定軸力のもと で,部材角R=0.125%,0.25%を1サイクル,そ の後R=0.5%から3.0%までを0.5%の増分で2 サイクルずつ繰り返し,その後も耐震性能が期 待できるならばR=4.0%,5.0%を1サイクル繰 り返す加力サイクルとした。

軸力は,耐震補強の対象となる既存建築物の コンクリート強度をFc=24MPaと想定した場合 の長期軸力比0.2(300kN一定)を載荷した。 従って,4MPaの試験体では軸力比1.2,8MPa の試験体では軸力比0.6の高軸力下での水平加 力となり(Table 1参照),加力実験により Fc=24MPaの場合の曲げ強度に達すれば,本補 強法は極低強度コンクリートのRC柱に対して もせん断損傷 RC柱の応急補強³⁾と同じような 耐震補強効果があると言える。

3. 実験結果

3.1 中心圧縮実験(R06S-RC4)

試験体のコンクリート強度を確認する目的で RC4について中心圧縮実験を行った。Fig.2に 軸力Nと柱の軸ひずみを、の関係を示す。図中に は、鉄筋の軸力負担分を差し引いたコンクリー トのみのラインもあわせて示している。グラフ を見ると、コンクリートの最大応力は3.6MPa となっており、シリンダー強度(4.0MPa)の 91%となった。このことから、極低強度試験体 の寸法効果による強度低下は、通常のコンク リート強度試験体(250mm正方形断面で89%^{o)}) とほぼ同じと言える。

3.2 履歴性状

柱試験体の水平力 V と部材角 R の関係, およ び柱材軸の平均伸縮ひずみ ε_νと部材角 R の関係 を Fig. 3 に示す。なお, V-R 曲線中のラインは, 横拘束効果を無視した多段配筋柱の曲げ強度略 算値であり,破線がシリンダー強度 σ_B で計算し た場合,実線がFc=24MPaとして計算した場合 となっている。なお,軸力比が1.2となってい る σ_B =4MPaの試験体は参考のためコンクリー トの圧縮破壊を無視して計算した。ちなみに, シリンダー強度で計算した曲げ強度は,MS35 以外はコンクリートで決まっている。

 $\sigma_{\rm B}$ =4MPaでPC鋼棒に緊張ひずみを導入して いないNS4は,部材角R=0.5%で主筋が圧縮降 伏し,その後も引張に転ずることはなかった。 V-R曲線は耐力上昇型のループを描いた。NS4 において,水平加力を2サイクルずつ行った部 材角($0.5\% \sim 3.0\%$)について,それぞれのV-R曲線を**Fig.**4に示す。グラフを見ると, R=1.5%辺りまでは2サイクル目の耐力が1サ

イクル目に比べ約10 ~ 20%低下しているが, R=2.0%以降はほとんど耐力低下が見られず, R=3.0%にいたってはまったく低下していない。繰り返し載荷に対して同一部材角でも強度が低下するRC柱の履歴性状が,同一部材角で 強度が低下せず,徐々に平行四辺形のようになり,しかも部材角の増大とともに平行四辺形の 上下の幅が広くなってきている。つまり,鋼材の応力ひずみ関係のような形状に移行してきている。これは,コンクリートの損傷が進行するにつれて,ほぼ鉄筋のみでモーメントを負担す るようになるからと思われる。軸ひずみは,プ レストレスが導入されていないため大きく進行 している(Fig.3参照)。

試験体MS4,MSt4はPC鋼棒に緊張ひずみを 導入しているため,NS4に比べ横拘束効果が高 まり水平耐力が上昇した。また,プレストレス が導入されているため,加力実験初期の段階か ら最大強度付近の耐力を維持している。 σ_B =4MPaの3体を比べてみると,横拘束効果が 高まるにつれ最大耐力が上昇し,軸ひずみの進 行も抑えられていることがわかる(Fig.3参 照)。しかし,いずれの試験体もFc=24MPaの 場合の曲げ強度計算値には到達していない。こ のことから,極低強度コンクリートのRC柱が 文献3)のようにせん断損傷を起こしコンク リート強度が低下した状態に相当しないことが わかる。しかし,コンクリート強度が4MPaと 低くても,プレストレス導入により水平耐力は 上昇し,優れた靭性能を示すことがわかった。

試験体 MS8 は, MS4 に比ベシリンダー強度 が約2倍となっており,安定した挙動を示して いるが,この試験体もFc=24MPaの場合の曲げ 強度計算値には到達していない。また,加力実 験終了時の柱の軸ひずみは MS4 とほぼ同程度 となっている。

試験体 MS35 は,シリンダー強度が高いため 高い耐力を維持し,ε_ν-R曲線も引張側に立ち上 がった好ましい形状となっている。

3.3 鋼板のひずみ

Fig. 5にフランジ面周方向の鋼板のひずみと 部材角の関係を示す。グラフを見ると,試験体 MSt4以外はコンクリート強度が大きくなるに つれて鋼板のひずみが小さくなっていることが わかる。MSt4ははらみ出し防止のために鋼板 を12mmと厚くしたが,コンクリート強度が極 端に低いため,はらみ出しを完全に防ぐことが できずに引張ひずみが生じている。MS35はコ ンクリート強度が高いため,3.2mmの薄い鋼板 であってもほとんどひずみが生じていない。

Fig. 5 Measured strain of steel plate

Fig. 6 Measured strain of PC bar

3.4 PC 鋼棒のひずみ

Fig. 6 に最も引張ひずみを受けた PC 鋼棒の ひずみと部材角の関係を示す。グラフを見る と、NS4は進行する柱の軸縮みに伴う柱の膨張 によって PC 鋼棒のひずみが加力実験初期から 増大していることがわかる。しかし,本補強を 施した場合, PC 鋼棒に初期緊張ひずみを導入 していなくとも、せん断ひび割れが生じたり損 傷が進まない限り, PC 鋼棒のひずみが上昇し ないことは,文献7)から明らかである。参考の ため計算したが,軸力300kNを載荷した場合の コンクリートの負担分計算値が243kN(コンク リートのヤング係数はシリンダーの圧縮試験の ものを使用),コンクリート強度を3.6MPaとし た場合(Fig. 2 参照)の最大軸耐力計算値が 222kNとなっており,計算上軸力300kNを載荷 した時点でコンクリートは圧縮破壊している。 つまり,部材角0.125%の水平加力の時点から PC 鋼棒のひずみが増大しているのは,軸力載 荷の時点で既にコンクリートが圧縮破壊してい るからと思われる。これは,柱にプレストレス が導入されておらず,コンクリートの圧縮強度 が上昇していないためである。

試験体 MS4, MSt4 については, 柱の軸縮み が進行しているにも関わらず PC 鋼棒のひずみ は減少している。これは,鋼板を介していると はいえコンクリート強度が極端に低いために, コーナーブロックが柱にめり込んでいることも 考えられる。MS8は,加力実験初期は PC 鋼棒 のひずみが減少していくが,部材角 R=2.0% 辺 りを境に上昇に転じている。コンクリートの劣 化が進み, R=2.0% 付近から柱の軸縮みが進行 してきたため(Fig.3参照),それに伴いPC 鋼 棒のひずみが上昇したと考えられる。

4. 解析的検討

PC 鋼棒と鋼板により拘束されたコンファイ ンドコンクリートの構成則をFig.7に示す。コ ンファインドコンクリート強度は,試験体 MS35のみ文献8)の強度上昇率算定式を用いて

計算を行った。コンクリート強度が4MPa, 8MPaの試験体については,文献8)の式が適用 範囲外であったため,シリンダー強度を用い た。なお,全ての試験体の応力ひずみ曲線は Mander式⁹⁾を用いた。そのとき,試験体NS4の み,前節で述べたようにコンクリートが水平加 力実験を始める時点ですでに圧縮破壊している ことと,付着強度も低いと考えられるので,強 度を低減させる必要があるが,今回の実験から はどの程度損傷しているかを推定することがで きなかったため,1つの試みとしてシリンダー 強度を50%低減させたもの(2MPa)を使用し た。なお,全試験体とも鋼板が柱表面に圧着さ れているため,最大強度以降耐力は低下せず, 維持すると仮定した(Fig.7参照)。

Fig. 7に示したコンクリートの構成則を利用 してファイバーモデルで曲げ強度を計算した。 せん断強度は,文献7)で提案されている修正荒 川 mean 式を用いた。σ_B=4MPa,8MPaの試験体 については,修正荒川式の適用範囲外と思われ るが参考のために示した。なお,文献7)の式は 鋼板が無い場合の式であるため,今回は鋼板に よるせん断力の負担分は無視した。そのため, せん断強度計算値は実際より低めの値となって いる。これらの計算結果と実験より得られたス ケルトンカーブとの比較を Fig. 8 に示す。ま た,試験体 NS4 は V-R 曲線で鋼材の応力ひずみ 関係のような挙動を示していたため(Fig. 3 参 照),ファイバーモデルによる計算においてこ の試験体のみ鉄筋のひずみ硬化を考慮した場合

も示した(降伏以降の2次勾配はヤング係数の 1/100)。

グラフを見ると,NS4については鉄筋のひず み硬化を考慮することで実験値を良好に評価で きている。MS4,MSt4は鋼板の厚さが異なる が,計算上拘束効果によるコンクリート強度の 上昇は無視しているため,その差異を表現する ことができなかった。ただ,全試験体ともファ イバーモデルによる計算値は概ね実験値を捉え ている。MS35はPC鋼棒と鋼板による拘束効果 を考慮し,コンクリート強度を48.1MPa(Fig. 7参照)として計算した結果,実験値を評価で きているのに対し,4MPaと8MPaの試験体は 拘束効果によるコンクリート強度の上昇を無視 しているにも関わらず(強度劣化がしない点で は拘束効果を考慮)比較的良好に評価できてい る。このことから,低強度コンクリートのRC 柱はプレストレスを導入しても,コンクリート 強度の上昇がほとんど生じないと考えられる。 これは,今後中心圧縮実験を行い確認する予定 である。

5. 結論

1) 極低強度コンクリートのRC柱は,せん断損 傷を起こし,軸耐力の低下した普通強度のRC 柱とは異なり,本補強法を施しても水平耐力の 上昇に限界があることがわかった。

2) 4MPa の極低強度コンクリートの RC 柱で あっても,本耐震補強を用いれば水平耐力,靱 性能とも改善可能であることがわかった。

参考文献

1) 山川哲雄,宮城敏明:緊張力を導入したPC鋼棒と鋼板 を用いたせん断損傷RC柱の応急補強法,日本建築学会構 造系論文集,No.586,pp.171-178,2004.12

2)日本建築防災協会:震災建築物の被災度区分判定基準および復旧技術指針,2001.

3) 上松茂ほか: せん断損傷RC極短柱の残存軸耐力と応急 補強実験,コンクリート工学年次論文集, Vol. 28, No. 2, pp.1123-1128, 2006.7

4)日本建築防災協会:既存鉄筋コンクリート造建築物の耐 震診断基準同解説,2001.

5) 永坂具也,大川善丈:コンクリートが特に低強度な場合のRC柱のアラミド繊維テープによる巻き付け補強 - その 1.実験および結果の概要 - ,日本建築学会大会学術講演梗 概集 C-2 (構造 IV), pp.375-376, 2006.9

6) 崎野健治ほか: コンクリート充填円形鋼管短柱の中心圧 縮耐力,構造工学論文集, Vol. 48B, pp.231-236, 2002.3

7)新城良大ほか:緊張PC鋼棒で横補強したRC柱の正負 繰り返しせん断破壊性状,コンクリート工学年次論文集, Vol. 28, No. 2, pp.169-174, 2006.7

8) 山川哲雄ほか:緊張PC鋼棒と鋼材により外部横補強し たRC短柱の高軸力下における弾塑性挙動-主に曲げ耐力 を中心に - ,日本建築学会構造系論文集,No.608,pp.135-142,2006.10

9) Mander, J. B., Priestley, M. J. N. and Park, R. : Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Engineering, ASCE, Vol. 114, No. 8, pp.1804-1826, 1988. 8