論文 ASR で劣化した梁部材の耐震性能に関する実験および解析的研究

三桶 達夫*1·長田 光司*2·小野 聖久*3·池田 尚治*4

要旨:近年,アルカリ骨材反応(ASR)によるコンクリートの劣化が多く報告されるように なった。本研究では,全国の高速道路橋においてASRで劣化した構造物の鉄筋ひずみを計測 して鉄筋の膨張に関する実態の調査を行うとともに,ASRで膨張した梁試験体の交番載荷試 験により耐震性能の検証を行った。その結果,ASR で劣化した部材の鉄筋ひずみは最大で 1000 µ 程度であり,この範囲内であれば鉄筋の破断が生じない限り,鉄筋コンクリート構造 物では耐震性能の明確な低下は見られないことを示した。また,ファイバーモデルによる解 析を行い,本解析法がASRの進行した試験体に対して有効であることを明らかにした。 **キーワード**:ASR,アルカリ骨材反応,梁部材,交番載荷試験,ファイバーモデル

1. はじめに

近年,アルカリ骨材反応(以下,ASR)によ り劣化したコンクリート構造物の一部に鉄筋の 曲げ加工部や圧接箇所が破断した事例が報道さ れ,これをきっかけとして,鉄筋破断に至るメ カニズムの究明とアルカリ骨材反応で劣化した 構造物の耐荷性能について様々な検討・報告が 行われている¹⁾。

しかしながら,軸方向鉄筋や PC 鋼材により 膨張が拘束されている構造物では,拘束方向に 沿った方向性のあるひび割れが亀甲状のひび割 れとともに顕在化することが多い。このような ASR により変状を起こした鉄筋コンクリート 構造物の耐荷性能については,単調載荷試験な どは多く行われており,主に耐荷力の評価が行 われている。反面,ASR の膨張による鉄筋の伸 びを考慮して,耐震性能を評価する目的の交番 載荷実験などはあまり行われておらず,ASR に よる膨張量と地震時のような正負繰返し荷重が 作用する場合の挙動について明らかにされてい ないのが現状である²⁾。

著者らは全国の高速道路を対象として、実際

に ASR でひび割れの見られる鉄筋コンクリー ト構造物で、切断による応力解放により鉄筋ひ ずみを計測し、ASR によるひび割れ発生状況と 鉄筋ひずみの実態を調査し既に報告した³⁾。

本論文は ASR の劣化を再現したコンクリー ト梁を作成し,この調査結果と対応する鉄筋ひ ずみの鉄筋コンクリート梁の正負交番試験を実 施するとともに,ファイバーモデルによる解析 を実施して,実験結果との比較を行うことによ り ASR で劣化したコンクリート部材の耐震性 能について考察したものである。

2. 試験概要

2.1 コンクリートの材料および配合

試験体のコンクリートの種類は表-1に示す 4 種類である。コンクリートの種類は、基準と なる普通コンクリート、普通コンクリートにア ルカリを添加したもの、および、ASR の抑制効 果があるとされる高炉セメントB種とフライア ッシュセメントB種である。なお、混和材を用 いたものは ASR 促進のためにアルカリを添加 した。

*1 大成建設(株) 技術センター 土木技術研究所 土木構工法研究室 工修 (正会員)
*2 中日本高速道路(株) 横浜支社 静岡工事事務所 構造工事区 博士(工学)(正会員)
*3 (株)高速道路総合技術研究所 道路研究部 橋梁研究室(正会員)
*4 横浜国立大学 名誉教授 工博(正会員)

-997-

試験体	W/C	単位量(kg/m ³)					供考
		W	С	混和材	S	G	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Nx	60	180	307	—	786	999	Nx: 普通ポルトランドセメント
В	50	161	169	169	786	999	混和材:高炉スラグ微粉末(アルカリ添加)
F	51	160	262	66	786	999	混和材:フライアッシュ(アルカリ添加)
Ν	60	180	307	—	786	999	N:普通ポルトランドセメント(アルカリ添加)

表-1 梁試験体のコンクリート配合

骨材は、早期に ASR による劣化を確認するた めに、大きな膨張が確認された鹿野産(山口県) の砕石を粗骨材に、君津産(千葉県)山砂を細 骨材に用いた。単位骨材量はコンクリートの種 類によらず一定とした。ASR を促進させるため のアルカリは、水酸化ナトリウムを各配合につ いてセメントの 2.5 mass%(Na₂O eq.)となるよ うに添加した。

2.2 試験体の形状

試験体の大きさは250×250×2000mmである。 図-1に配筋図を示す。鉄筋にはSD295を用いた。 今回ははり型の試験体とし,主鉄筋にはD16を 4本配筋し1.28%,せん断補強鉄筋にはD10を せん断補強鉄筋比で0.38%,150mm間隔で配置 した。本試験体の各鉄筋量は,昭和55年以前に 設計された代表的な独立二本形式の固定橋脚に おいてせん断破壊が先行しないように適切な耐 震補強を実施した橋脚と対応させて設定した。

2.3 試験ケース

今回行った試験は**表-2**に示す4配合について交番載荷試験を行った。

なお載荷試験時における膨張ひずみは各試験 体の最大値をとって, Case1=500 µ, Case2=600

図-1 部材試験体配筋図

µ, Case3=750µ, Case4=950µとし, 解析も これらの値を用いた。

表-2 試験ケース

ケース	試験方法	種別	主筋初期ひずみ
Case1	交番載荷	Nx	500μ
Case2	交番載荷	В	600μ
Case3	交番載荷	F	$750~\mu$
Case4	交番載荷	Ν	$950~\mu$

2.4 載荷方法および計測項目

載荷は,鉛直交番荷重(変位)を加えること により行った。降伏変位±δy手前までは荷重制 御,その後は変位制御とした。交番加力パター

ンは $\mathbf{2} - \mathbf{2}$ に示すように $\pm \delta \mathbf{y}$ の整数倍変位で3 回ずつ繰返した。

載荷装置を図-3に示す。ここで今回降伏変 位は Casel 交番載荷試験の最外縁の主鉄筋の梁 部材中央のひずみが降伏ひずみに達した時点の 平均とした。降伏変位は Casel により決定し, Case2 以降の降伏変位は Casel と同じとした。ま た,計測項目は鉛直荷重,鉛直変位,水平変位, 主鉄筋およびせん断補強鉄筋のひずみ,コンク リートひずみとした。その他,ひび割れ状況, コンクリートの圧壊,主鉄筋の座屈,かぶりコン クリートの剥落を目視により観察した。

2.5 材料試験結果

試験体に使用したコンクリートおよび鉄筋の 材料試験結果を**表-3**,4に示す。

コンクリートの物性値として交番載荷実験を 行う試験体と同様にアルカリ骨材反応を促進試 験で進行させた別の試験体から φ 100mm のコア を採取し 200mm の長さに整形して,圧縮強度, 静弾性係数およびポアソン比を測定した。なお, コンクリートの引張強度は圧縮強度の 1/10 とし た。

鉄筋の物性値は、鉄筋の引張試験によった。

表-3 コンクリート材料試験結果

供試体種類	No	圧縮強度 (N/mm ²)		ヤング イング イング	$\le \times 10^4$ mm ²)
	1	44.4	44.5	2.72	2.59
Nx Casal	2	46.3		2.35	
Caser	3	42.9		2.71	
D	1	44.4	45.8	3.02	2.85
B Case2	2	46.3		2.82	
Casez	3	46.8		2.72	
E	1	54.4	54.4	2.90	3.18
F Caro3	2	59.0		3.71	
Cased	3	49.9		2.94	
N	1	31.8	27.4	1.24	1.40
IN Case/	2	24.2		1.66	
Case4	3	26.2		1.31	

表一4 鉄筋材料試験結果

供試体種類	No	降伏強度 (N/mm ²)		ヤング	$\le \times 10^5$ mm ²)
D10	1	365	367	1.83	1.85
D16 (十欲)	2	373		1.88	
(土肋)	3	365		1.85	

実験結果と考察

3.1 荷重-変位関係

Case1~Case4 の荷重-変位関係の実験結果を **図-4**, **5**に示す。また,実験時における曲げ ひび割れ発生荷重および変位,降伏荷重および 変位を**表-5**に示す。

図-4 Case1,4 実験結果

図-5 Case2,3 実験結果

表一5 実験時における各何重およ	こび変位
------------------	------

	曲げひび書	削れ発生時	初降	伏時
	荷重kN	変位mm	荷重kN	変位mm
Case1	28.0	0.48	± 77.7	± 4.00
Case2	32.7	0.56	± 83.0	± 4.05
Case3	36.3	0.41	± 84.7	± 3.47
Case4	35.1	0, 66	± 77.5	± 3.32

Case1~Case3 試験体は $\pm 9 \delta y$ でかぶりコンクリ ートが剥落しはじめ、 $\pm 10 \delta y$ まで変形しても、 最大荷重の約 8 割の耐力を保持していた。

なお、今回は Case2~Case4 の試験体について は Case1 試験体同様、1 δ y=±4.0mm の変位制 御で繰返し載荷を行った。

写真-1 Case4 試験体状況 4δy 時

写真-2 Case4 試験体状況載荷終了時

Case4 試験体は+9δyで下部かぶりコンクリー トが剥落し、±9δy時点での荷重が最大荷重の 8割まで低下し,主鉄筋の座屈を目視にて確認し た。

Case4 においてせん断耐荷性能が低下した理 由として、ASR による膨張により、初期段階か ら発生していたひび割れの影響により、コンク リートが負担するせん断耐力が低下していたた めと考えられた。ただし、この試験体で明確な せん断破壊が進行したのは $9\delta y$ 以降であり、通 常耐震設計で考慮する範囲ではきわめて高いじ ん性を確保していた。Case4の4δy時および載 荷終了時の試験体の状況を写真-1,2に示す。

写真-1,2に示すように、せん断ひび割れが 垂直方向に進展している。これは、ASR の膨張 に対する鉄筋の拘束による、いわゆるケミカル プレストレスの影響であると予測される。

3.2 包絡線の比較

Case1~Case4の実験結果より±各δy1サイク ル目を用いて描いた、荷重-変位曲線の包絡線 を図-6に示す。

図-6より初期ひずみの大きい Case3 ほど部 材降伏以降の荷重が安定して保持される傾向に あることがわかる。

Case4 についても±9δy において荷重が低下

しはじめるまではこのような傾向を有していた ことが図-6よりわかる。

今回実験を行った鉄筋初期ひずみの範囲では 曲げ耐力はほぼ同様となったことから、ASR が 鉄筋の伸び性能、定着性能に与える影響はそれ ほど大きくなく、 ASR の膨張が圧縮部のコンク リートの終局ひずみに与える影響は小さかった ものと思われる。

以上の結果から ASR で劣化したコンクリート 構造物の耐荷性能および変形性能は本試験の範 囲内では明確な低下は認められなかった。

3.3 履歴吸収エネルギーの比較

図-7に各ステップのうち2 サイクル目の履 歴吸収エネルギーと変位の関係を示す。

せん断破壊の傾向が顕著であった Casel.4 に

おいては、同一変位における履歴吸収エネルギ ーが小さくなる傾向が認められた。特に Case4 においては ASR による初期ひび割れの影響で、 鉄筋とコンクリートの付着性能が低下していた こと、繰返し荷重を受けることによりコンクリ ートかぶり部の破壊が早期に生じ主鉄筋の座屈 が早まったことが一因であると考えられた。

Case2,3 においてはケミカルプレストレスが効 果的に作用しており、今回の初期ひずみおよび 変形レベルでは急激な吸収エネルギーの低下は 生じていなかった。

Case4 において吸収エネルギーが低下したの は $\pm 9 \delta y$ 以降であり,通常耐震設計で考慮する範 囲では,各試験体とも ASR 劣化による耐震性能 の低下は見られなかった。

4. ファイバーモデルによる解析

4.1 解析の概要

従来から柱および梁部材の正負交番載荷解析 に広く適用されているファイバーモデルによる 解析を行い,アルカリ骨材反応によるコンクリー トおよび部材の変化を劣化を初期ひずみとして 考慮することにより検討を行った。

解析におけるコンクリート及び鉄筋の応力ひ ずみ曲線は材料試験結果により決定した。

使用プログラムは汎用解析コード ABAQUS で あり、これにコンクリートおよび鉄筋の応力ーひ ずみ特性には、それぞれ修正 Kent&Park の構成 則と Menegotto-Pinto 型(GMP モデル)の構成則 を用いプログラム化したユーザーサブルーチン を組込み、解析を行った⁴⁾。

試験体について, 載荷前にはり部材としての

膨張ひずみを計測し、コンクリートおよび鉄筋 の初期ひずみとして考慮した。なお、解析に用 いる初期ひずみは各試験体の鉄筋ひずみのうち 最大値とした。また、ASR による膨張を考慮し た解析を行うため、初期ひずみの導入は鉄筋に 所定量が導入されるような温度ひずみとして膨 張ひずみをコンクリートに加えることにより、 各試験体で計測された鉄筋量に相当する伸びひ ずみがモデル内の鉄筋にも生じる様にした。

4.2 実験結果との比較

(1) 荷重-変位関係

Case1 と Case3 の荷重-変位関係について実験 結果と解析結果を比較した図を図-8~図-9 に示す。

ファイバーモデルではせん断変形の影響を考 慮していないため、Case1においては6δy以降, 実験結果は解析結果と異なり、逆S字カーブを 描くようになり、せん断変形が顕著になってい ることがわかる。Case3においては、実験結果と ファイバーモデルによる解析結果との差は小さ くなっていたことから、初期ひずみによるケミ カルプレストレスが導入されたことによりせん 断耐荷性能がCase1と比較して向上していた。

(2) 曲げひび割れ発生荷重および降伏荷重時

各実験と解析における曲げひび割れ発生時お よび初降伏荷重時の荷重および変位の比較を表 -6,7に示す。

曲げひび割れ発生荷重は初期ひずみが大きい

図-9 実験-解析比較, Case3

表-6 曲げひび割れ発生荷重

	実験(曲げ	ひび割れ発生時)	解析(曲け	「ひび割れ発生時)	
	荷重kN	変位mm	荷重kN	変位mm	初期ひずみ
Case1	28.0	0.48	30.0	0.30	500μ
Case2	32.7	0.56	36.8	0.46	600μ
Case3	36.3	0.41	47.0	0.45	750μ
Case4	35.1	0.66	39.0	0.69	950μ

表-7 降伏荷重および変位

	実験	(初降伏時)	解析		
	荷重kN	変位mm	荷重kN	変位mm	初期ひずみ
Case1	± 77.7	± 4.00	± 71.4	± 3.24	500μ
Case2	± 83.0	± 4.05	± 70.8	± 2.94	600μ
Case3	±84.7	± 3.47	± 70.7	± 2.30	750μ
Case4	± 77.5	± 3.32	± 71.8	± 3.12	950 μ

ほど高くなる傾向が実験・解析ともにみられた。 これはケミカルプレストレスの影響によると考 えられる。

Case4 においては Case1 と同等の初降伏荷重で あったが、これは ASR 促進による試験体のひび 割れの影響を受けていた可能性が考えられた。

解析結果では初降伏荷重については 4 ケース とも同等であった。初降伏変位については, Case4 の実験時で 3.3mm と小さく,解析値とほ ぼ一致しており,ASR による膨張により初期引 張ひずみが鉄筋に発生し,降伏ひずみまでの余 裕が小さくなった影響を反映していた⁵⁾。

5. まとめ

今回の実験及び解析の結果以下の結論を得た。 1) ASR 劣化試験体の交番載荷試験の結果,初 期ひずみが 750 μ 程度までの伸びの範囲では,鉄 筋のケミカルプレストレスの効果によりせん断 耐荷性能の明確な改善がみられ,耐震性能はむ しろ向上がみとめられた。

2) 今回の実験において鉄筋の初期ひずみが 950 μの試験体ではせん断耐荷性能の改善がみられ なかったが、9δy までは十分な耐荷性能を示し た。この結果から、鉄筋の初期ひずみが概ね 1000 μまでの鉄筋コンクリート構造物では、変形性 能等に関する明確な耐震性能の低下はないと判 断された。

3) 鉄筋の伸びにより,降伏までの伸び量に余裕 が少なくなる影響により,初期降伏変位が小さ くなる傾向が実験で示され,この結果はファイ バーモデルでも再現できた。

4)本検討の範囲内で、ファイバーモデルによる 解析結果は、ASR で劣化した鉄筋コンクリート 部材について、曲げ破壊が支配的でせん断破壊 が進行しない範囲(図-8,9に示す荷重 - 変位 曲線においてせん断すべりが発生しない場合、 もしくは発生以前までの範囲)では変形量およ び耐力を比較的精度良く予測できることが示さ れた。

参考文献

- 1) 土木学会:土木学会アルカリ骨材反応対策小 委員会報告書,コンクリートライブラリー 124,2005.8
- 2) 久保善司、山本晋、服部篤史、宮川豊章: ASR がコンクリート曲げ部材の耐久性状に 与える影響,材料, Vol.50, No.9, pp.1013-1020, 2001
- 3)長田光司,小野聖久,丸屋剛,池田尚治:ア ルカリ骨材反応で変状を起こしたコンクリ ート部材の耐震性能,コンクリート工学, Vol.44, No.3, pp.34-42, 2006.3
- 4)田中良弘,藤井 学,安田扶律,畑 明仁: 補強したRC橋脚の交番載荷実験シミュレ ーション,コンクリート工学年次論文報告集, Vol.18, No2, pp.155-160, 1996.
- 5) 岡村甫, 辻幸和: ケミカルプレストレスを導 入したコンクリート部材の力学的特性, 土木 学会論文報告集, 第225 号, pp.101-108, 1974.5