中間層崩壊に対する建物層数の影響 論文

中村 孝也^{*1}·芳村 学^{*2}·近藤 隆幸^{*3}

要旨:本論では,せん断破壊型 RC 柱の崩壊に関する実験結果を用いた地震応答解析により, RC 系建物の中間層崩壊について検討した。兵庫県南部地震における中間層崩壊の被害が7 層から10層の建物に多かったことから、それらの建物を想定した9層建物モデルを設定し、 崩壊層の最大変形について主に6層,3層建物と比較した。その結果,崩壊層の Is 値が同じ であっても,6層,3層建物に比べて9層建物の変形が大きくなる傾向があり,9層建物の中 間層の安全性がより低いと考えられること、等がわかった。

キーワード:鉄筋コンクリート系建物,旧基準,中間層崩壊,せん断破壊型柱,建物層数

1. はじめに

1995 年兵庫県南部地震では, RC 系建物の中間 層において、ある1層のみが完全に崩壊する中 間層崩壊の事例が多くみられた。これらの崩壊 建物のほとんどは1971年以前の旧基準によって 建てられていたが、現在でも旧基準によって建 てられた建物はかなりの数が残っており、この ような古い建物が集中しているオフィスビル街 等の地域では、大地震の際多大な被害が出るこ とが危惧される。したがって、これらの建物の 地震時における応答性状を把握することは非常 に重要であるといえる。

本論では、せん断破壊型 RC 柱の崩壊に関する 実験結果を用いた地震応答解析により、建物の 中間層崩壊を検討することを目的とする。ここ で,前述の地震で中間層崩壊した建物には7層 から 10 層のものが多かったのであるが¹⁾, それ らを代表する建物として 9 層建物モデルを設定 し、主として6層、3層建物との最大層間変形の 違いを調べ、中間層崩壊に対する建物層数の影 響を検討する。

本節および 2.2 節では、9 層、6 層、3 層建物 モデルの設定方法について示す。検討対象は, 旧基準で設計された建物とし、図-1 に示す多質 点せん断型モデルを解析対象とした。実建物の イメージを図-2 に示す。各層階高を 3,600mm, 柱内法高さを 2,400mm とした。柱断面寸法は崩 壊層(後述)で600mm×600mmとした。各建物 の1次固有周期は0.02×h(hは建物高さ[m])で 求めた。1次固有周期を表-1に示す。

表-1 1次固有周期

建物層数	1 次固有周期 (s)
9 層	0.648
6 層	0.432
3 層	0.216

(正会員)

(正会員)

2. 解析手法

2.1 解析モデル

*1 首都大学東京大学院 都市環境科学研究科建築学専攻助教 博士 (工学) *2 首都大学東京大学院 都市環境科学研究科建築学専攻教授 工博 *3 首都大学東京大学院 都市環境科学研究科建築学専攻

建物の主要構造諸元を表-2に示す。各層重量 を 753kN(各層柱1本からなるとして、これが 1.2tf/m²×8m×8m の重量を負担するものとして 求めた)と仮定した。柱は靭性指標 F²⁾が 1.0 と なる2種類のせん断柱を対象とした。この柱に ついては 2.2 節で後述する。外力分布による構造 耐震指標 Is²⁾の補正係数として,層せん断力係数 の建物高さ分布を表す Ai の逆数を用いた。耐力 分布は旧基準の設計用外力分布を基本とし、上 部の数層は柱を細くしないのが一般的であるこ とから、上部3層が同一となるようにまず仮定 した。次に、各建物の上から3層目を崩壊想定 層とし(9層建物では7層,6層建物では4層, 3層建物では1層),上記で定めた耐力分布の80% とした(この層を以後「崩壊層」と呼ぶ)。これ を耐力分布として決定した。上から3層目を崩 壊層とした理由は,柱の軸力比が同一という条 件下で各層数の建物の崩壊層の変形を比較する ためである。ここで、3層建物は1層が崩壊層と なり中間層崩壊ではないが,9層,6層建物との 比較のために用いた。

各層建物の崩壊層の Is 値を同一とし, Is=0.4 とした。これは、9 層程度の建物の中間層に被害 が多かったのはその Is 値が 6 層、3 層建物より も低かったためではない、という前提条件を設 けたことになる。崩壊層の Is 値, F 値, 1/Ai よ り崩壊層の強度指標 C を求めた。この C 値から 崩壊層の最大耐力を決定した。その他の層につ いては、上記で定めた耐力分布から最大耐力を 求め、これより C 値を決定した。さらに、F 値, 1/Ai より Is 値を決定した。

高さ方向の初期剛性分布は耐力分布と同じと し、各建物の1次固有周期と各層の重量より初 期剛性を求めた。

2.2 復元力モデル

解析で使用する柱の復元力特性は、過去のせん断破壊型 RC 柱の実験例に基づいて設定された S1 柱および S2 柱³⁾の 2 種類を用いた。両者は軸力比=0.2、柱内法高さ h_0 /柱せい D=4、主筋比 p_g =2.56%は共通で、横補強筋比 p_w が S1 柱で

表-2 主要構造諸元

(a) 9 層建物

層	重量 (kN)	初期 剛性 (kN/cm)	最大 耐力 Q ₂ (kN)	C 値	F值	1/Ai	Is 値
9	753	1,510	1,820	2.4	1.0	0.44	1.07
8	753	1,510	1,820	1.2	1.0	0.55	0.66
7	753	1,210	1,460	0.65	1.0	0.62	0.40
6	753	1,930	2,330	0.77	1.0	0.68	0.53
5	753	2,300	2,780	0.74	1.0	0.74	0.55
4	753	2,630	3,170	0.70	1.0	0.80	0.56
3	753	3,070	3,700	0.70	1.0	0.86	0.61
2	753	3,510	4,230	0.70	1.0	0.93	0.65
1	753	3,950	4,760	0.70	1.0	1.0	0.70

(b) 6 層建物

層	重量 (kN)	初期 剛性 (kN/cm)	最大 耐力 Q ₂ (kN)	C 値	F値	1/Ai	Is 値
6	753	2,050	1,520	2.02	1.0	0.54	1.08
5	753	2,050	1,520	1.01	1.0	0.66	0.66
4	753	1,640	1,210	0.54	1.0	0.74	0.40
3	753	2,730	2,020	0.67	1.0	0.83	0.56
2	753	3,410	2,530	0.67	1.0	0.91	0.61
1	753	4,090	3,030	0.67	1.0	1.0	0.67

(c) 3 層建物

層	重量 (kN)	初期 剛性 (kN/cm)	最大 耐力 Q ₂ (kN)	C 値	F値	1/Ai	Is 値
3	753	3,730	1,130	1.50	1.0	0.73	1.10
2	753	3,730	1,130	0.75	1.0	0.87	0.65
1	753	2,990	900	0.40	1.0	1.0	0.40

0.21%, S2 柱で 0.14%という違いがある。以後, S1 柱を用いた建物をモデル S1, S2 柱を用いた 建物をモデル S2 と呼ぶ。S1 柱と S2 柱について, 解析に使用する上から 3 番目の層の復元カスケ ルトンカーブを図-3 に,各層の崩壊変形を表-3 に示す。復元カモデルの主要な点は以下のよう に決定した。

- 最大耐力時変形δ₂は、全ての層で層間変形 0.67%とした。第3折れ点時の層間変形δ₃は、 全ての層で1.3%、耐力Q₃は最大耐力Q₂の50% とした。なおQ₂について、強度補正値³⁾は考 慮していない。
- 2)9層建物では、上から3番目の層(7層)の崩 壊変形δuを実験結果より、モデルS1で8.9%、

モデル S2 で 3.6%とした。8,9 層の Su は7 層 と同じとした。また、軸力比の増加にともな う変形能力の低下を考慮して、下層に行くに 従いδu を小さくした。すなわち、6 層以下の δuは,7層を1,1層を0.7の比率とし,間を 線形補完することにより求めた。ただし、本 解析では後述のように崩壊層にのみ変形が集 中するため,他の層の崩壊変形の値が解析結 果に大きな影響を与えることはない。6層建物 は9層建物の上部6層,3層建物は同3層と同 じとした。崩壊時の水平力はゼロとした。

表-3	各層の崩壊変形δu
表-3	各層の崩壊変形δι

S2柱

3.6

3.6

3.6

3.4

3.2

3.1

(a)	9 層	建物		(b)	6 層3	建物
핀	δu(%)		ó)		δu(%)
眉	S1柱	S2柱		眉	S1柱	S2木
9	8.9	3.6		6	8.9	3.6
8	8.9	3.6		5	8.9	3.6
7	8.9	3.6		4	8.9	3.6
6	8.5	3.4		3	8.5	3.4
5	8.0	3.2		2	8.0	3.2
4	7.6	3.1		1	7.6	3.1
3	7.1	2.9				
2	6.7	2.7				
1	6.3	2.5				

ᅌᄫᆧᄴ

(c)	c)3 層建物				
困	δu(%)				
眉	S1柱	S2柱			
3	8.9	3.6			
2	8.9	3.6			
1	8.9	3.6			

2.3 地震応答解析

入力地震動として,神戸海洋気象台 NS 波 (JMA, 1995兵庫県南部地震, 最大速度 82.6cm/s), Sylmar NS 波 (SYL, 1994 Northridge 地震, 同 121.5cm/s), El Centro NS 波 (ELC, 1940 Imperial Valley 地震,同 33.6cm/s),東北大学 NS 波(TOH, 1978 宮城県沖地震,同 41.6cm/s),八戸港湾 EW 波(HAC, 1968 十勝沖地震, 同 33.9cm/s) の 5 波を用いた。解析においては、地震動の大きさ を調節して用いた。

減衰には初期剛性比例型を用い、減衰定数は 1%とした。

3. 解析結果

解析の結果,全てのケースで崩壊層に変形が 集中し,他の層は小さな変形にとどまった。以 下はすべて崩壊層の応答について論じる。

3.1 9 層建物の変形が崩壊変形の 90%の場合

建物の損傷程度が崩壊の寸前である場合を想 定し,9 層建物の崩壊層の変形が崩壊変形δuの 90%となる場合について検討した。すなわち、入 力地震動を,9層建物での崩壊層の最大変形がモ デル S1 で 8.0% (δu の約 90%), モデル S2 で 3.2% (同)となるようにレベルを調節し、それと同 レベルの地震動を6層建物と3層建物にも入力 した。入力地震動の最大速度を表-4に示す。

地震波	モデル S1	モデル S2
JMA	40.9	31.0
SYL	82.6	67.0
ELC	93.7	30.8
TOH	76.8	40.5
HAC	56.7	37.6

表-4 入力地震動の最大速度(cm/s)

時刻歴応答の例として、モデル S1 の JMA に おける入力地震動の加速度時刻歴および崩壊層 の層間変形時刻歴を図-4 に示す。最大変形は 3 層建物で 3.1%,6 層建物で 2.0%,9 層建物で 8.0% であった。最大変形は、3層建物と6層建物は同 程度で,9層建物ではそれらより大きくなった。

各モデルについて,建物層数と崩壊層の最大 変形の関係を図-5(a),(b)に示す。

(a) モデル S1 3 層と6 層を比較すると, ELC で 6 層が3 層より大きくなり,他では6 層が3 層よ り小さくなったが,平均値を求めると3 層で 5.2%,6 層で4.4%となり,ほぼ同じ値となった。 ここで,崩壊した ELC については,平均値算出 において最大変形を崩壊変形(8.9%)とした。 ELC のみ傾向が異なった理由は不明である。次 に,6 層と9 層を比較すると,ELC を除く4 つの 地震波で9 層の変形が大きくなった。平均値は9 層で8.0%,6 層で4.4%となり,前者は後者の倍 程度大きかった。

(b) モデル S2 3 層と 6 層を比較すると, SYL, TOH, HAC で 6 層が 3 層より小さくなり,他で は 6 層が 3 層より大きくなったが,平均値を求 めると 3 層で 1.5%, 6 層で 0.89%となり,3 層の ほうがやや大きいもののほぼ同じであるといえ る。ここで,3 層の SYL のみ崩壊に近い大きな 変形が生じたが,他はおしなべて 2%以下の小さ な変形にとどまった。SYL のみ傾向が異なった 理由は不明である。次に,6層と9層を比較する と,すべての地震波で9層の変形が大きくなっ た。平均値は9層で 3.2%,6層で 0.89%となり, 9層のほうが相当大きかった。

3.2 9 層建物の変形が崩壊変形の 60%の場合

9 層建物の崩壊層の変形が崩壊変形δu の 60% となる場合について検討した。崩壊からは遠ざ かるが,建物の変形レベルが小さい場合につい ても調べることを意図した。入力地震動は,9 層 建物での最大変形がモデル S1 で 5.3% (δu の約 60%),モデル S2 で 2.2% (同)となるようにレ ベルを調節し,それと同レベルの地震動を 6 層 建物と 3 層建物にも入力した。入力地震動の最 大速度を表-5 に示す。なお,モデル S2 における 最大速度は、崩壊層の変形をδu の 90%とした前 節の解析時(表-4参照)よりもわずかに小さい のみであるが、これは復元カスケルトンにおけ る耐力低下が急激なため(図-3(b)参照)、わず かの入力地震レベルの変化で応答変形が大きく 増減するためである。

表-5 入力地震動の最大速度(cm/s)

地震波	モデル S1	モデル S2
JMA	36.5	30.9
SYL	78.0	64.3
ELC	49.9	30.4
TOH	56.4	40.4
HAC	45.4	37.56

各モデルについて,建物層数と崩壊層の最大 変形の関係を図-6(a),(b)に示す。全ての地震波 で、9層の変形は6層と3層の変形よりも大きか った。

(a) モデルS1 平均値を求めると,3層で3.1%,
6層で2.9%,9層で5.3%となり,3層と6層が ほぼ同じ値で,9層はそれらよりも大きかった。
(b) モデルS2 平均値を求めると,3層で1.2%,
6層で0.86%,9層で2.2%となり,3層と6層が ほぼ同じ値で,9層はそれらよりも大きかった。

モデル S1, モデル S2 ともに前節と同様の傾向 が見られた。

3.3 9 層建物と 12 層建物の比較

兵庫県南部地震においては,数は少ないものの12層程度の旧基準建物にも中間層崩壊が生じた^{1),4),5)}。そこで,本節では12層建物を設定して9層建物と応答変形を比較した。12層建物についても崩壊層は上から3番目の層(10層)とし,その層のIs値を0.4とした。12層建物の構造諸元および復元力特性の設定方法は2.1節および2.2節と同様とした。ただし崩壊変形δuのみは,上部9層の値を9層建物と同じとするために,9層以下のδuは,10層を1,1層を0.55の比率とし,間を線形補完することにより求めた。主要構造諸元を表-6に示す。また,1次固有周期は0.864(s)となった。

入力地震動は、12 層建物での最大変形がモデ

図-6 建物層数と崩壊層の最大変形の関係

表-6 主要構造諸元(12 層建物)

層	重量	初期 剛性	最大 耐力 Q ₂	C 値	F 値	1/Ai	Is 値	崩壊 δu(変形 %)
	(KN)	(kN/cm)	(kN)					S1柱	S2柱
12	753	1170	2080	2.8	1.0	0.38	1.1	8.9	3.6
11	753	1170	2080	1.4	1.0	0.48	0.66	8.9	3.6
10	753	928	1660	0.74	1.0	0.54	0.4	8.9	3.6
9	753	1560	2770	0.92	1.0	0.60	0.55	8.5	3.4
8	753	1880	3330	0.88	1.0	0.65	0.57	8.0	3.2
7	753	2160	3830	0.85	1.0	0.70	0.59	7.6	3.1
6	753	2410	4270	0.81	1.0	0.74	0.60	7.1	2.9
5	753	2630	4660	0.77	1.0	0.79	0.61	6.7	2.7
4	753	2810	4990	0.74	1.0	0.84	0.62	6.3	2.5
3	753	3130	5550	0.74	1.0	0.89	0.65	5.8	2.3
2	753	3440	6100	0.74	1.0	0.94	0.69	5.4	2.1
1	753	3750	6650	0.74	1.0	1.0	0.74	4.9	2.0

ル S1 で 8.0% (崩壊変形δu の約 90%), モデル S2 で 3.2% (同) となるようにレベルを調節し, それと同レベルの地震動を 9 層建物にも入力し た。入力地震動の最大速度を**表-7**に示す。

各モデルについて,建物層数と崩壊層の最大 変形の関係を図-7(a),(b)に示す。モデルS1,モ デルS2ともに、すべての地震波について9層建

表-7 入力地震動の最大速度(cm/s)

地震波	モデル S1	モデル S2
JMA	33.4	23.1
SYL	70.2	56.7
ELC	32.7	26.5
TOH	30.9	18.4
HAC	36.7	24.8

物よりも 12 層建物の変形が大きくなった。モデ ル S1 における平均値は、9 層が 2.3%、12 層が 8.0%であり、後者は前者の約 3.5 倍であった。モ デル S2 における平均値は、9 層が 0.53%、12 層 が 3.2%であり、後者は前者の約 6 倍であった。9 層建物よりも 12 層建物の方が崩壊層の最大変形 が大きくなり、中間層崩壊の危険性は大きいと いえる。兵庫県南部地震において 12 層程度の建 物の中間層崩壊が少なかったのは、建物の数自 体が少なかったためであると考えられる。なお 文献 4)、5)によると、兵庫県南部地震において 中間層が最大被災階となって「倒壊」と判断さ れた RC 系建物は計 51 棟あるが、うち 12 層建物 は 3 棟で、全体の約 6%であった。

3.4 変形の集中について

3.2 節と 3.3 節で行った中間層崩壊に関する 6 層, 9 層, 12 層建物の解析より, 層数が多くな るほど崩壊層の変形が大きくなる傾向が得られ た。この理由として, 層崩壊する多層建物では 各層の変形が崩壊層に集中するため, 層数が多 くなるほど集中する変形が大きくなったことが 考えられる。

4. まとめ

旧基準で設計された 3, 6, 9, 12 層の RC 系建 物に対して地震応答解析を行い,中間層崩壊に 対する建物層数の影響を検討した。崩壊層を上 から 3 層目とし,その層の Is 値を 0.4 の同一値 とした。崩壊層の最大変形について,9 層建物を 主な対象として,3,6,12 層建物と比較した。 得られた知見を以下に示す。

 9層,6層,3層建物について比較した場合, 崩壊層の最大変形は,6層と3層建物ではほ

図-7 建物層数と崩壊層の最大変形の関係

ぼ同じで,9層建物がそれらよりも大きくなる傾向があった。

- 2) 1)より、崩壊層の Is 値が同じであっても、6 層、3 層建物に比べて9 層建物の安全性がよ り低いことがわかる。このことは、兵庫県南 部地震で7 層から 10 層の建物に中間層崩壊 の被害が多かったことと関連があると思わ れる。
- 3) 9 層建物と12 層建物を比較した場合,12 層 建物の方が崩壊層の最大変形が大きくなっ た。12 層程度の旧基準建物は、数は少ない ものの Is 値が小さい場合には中間層崩壊の 危険が大きいといえる。

参考文献

- 日本建築学会:阪神·淡路大震災と今後の RC 構造設計 -特徴的被害の原因と設計への提 案-,1998
- 日本建築防災協会:既存鉄筋コンクリート造 建築物の耐震診断基準 同解説,2001.10
- と野裕美子,芳村 学,中村孝也:既存低層 鉄筋コンクリート建物の Is 値と倒壊の関係 ー診断基準における「せん断柱」からなる建 物を対象としてー,日本建築学会構造系論文 集,第587号,pp.197-204,2005.1
- 日本建築学会ほか:阪神・淡路大震災調査報告 建築編-1 鉄筋コンクリート造建築物, 1997.7
- 5) 日本建築学会ほか:阪神・淡路大震災調査報告 建築編-2 鉄骨鉄筋コンクリート造建築物ほか、 1998.5