水平接合面を有するPCa合成梁の曲げせん断性状 論文

誠^{*1}·永井 覚^{*2}·渡邊茂雄^{*3}·前田祥三^{*4} 丸田

要旨: せん断スパン比 M/QD=2.5 (通常スパン)と M/QD=1.5(短スパン)のスラブと水平接合面 を有する梁試験体を用い,下部 PCa 部分(60N/mm²)と上部現場打設部分のコンクリート強度 (30N/mm²)が異なる合成梁の構造実験を行った。その結果, M/QD=2.5の試験体は下部コンク リート強度(Fc60N/mm²)でせん断強度を評価でき, M/QD=1.5の試験体から水平接合面のすべ りを防止すれば、せん断強度は下部コンクリート強度で評価できるとともに、付着割裂強度 は上部コンクリート強度で上端筋低減を無視して算定すれば、評価できることが分かった。 キーワード:水平接合面,合成梁,異種コンクリート強度,せん断強度,付着割裂強度

1. はじめに

*4 鹿島

近年、超高層鉄筋コンクリート建物の架構に は、プレキャスト(PCa)部材が用いられることが 多くなってきている。梁部分は図-1(a)に示す ような下部ハーフ PCa 部材を用いることが多く, 上部のコンクリートおよび床コンクリートを現 場打設した合成梁となる。しかし多くの場合, スラブ部分の必要コンクリート強度は梁の必要 コンクリート強度に比べ低い場合が多く,その 際,現場打設梁コンクリートとスラブコンクリ ートを打ち分ける必要があり,施工が複雑にな っている。

今回,施工性向上のため梁上部および床スラ ブを下部 PCa 部より低強度のコンクリートとし た合成梁の構造性能を確認する。梁のコンクリ

ート強度は必要せん断強度や付着割裂強度を確 保するために決定されるが、実際の梁はスラブ が取り付いた T 形 (両側スラブ付き) 梁や Γ 形 (片側スラブ付き)梁として, せん断にも付着 割裂にも抵抗することは分かっていた¹⁾。近年, 遮音の問題からスラブが厚くなってきておりス ラブの拘束効果は以前より大きくなっていると 推察される。この拘束効果で、梁上部コンクリ ート強度が低くてもせん断や付着割裂強度の低 下は相殺されると考えられる。なお、材軸平行 接合部(水平接合面)を有する PCa 合成梁に関 しては,水平接合面のせん断伝達に関する検討 が多いが^{例えば2)}, 異種コンクリート強度を水平接 合面の上下に用いた研究は少ない³⁾。

2. 実験計画

試験体はハーフ PCa 梁 部材を中心とした 11 体と した。一体打設の同サイズ の矩形梁が文献 4)に 2 体 ありこれを比較検討に用 いる。試験体の一覧を表一 1に, 配筋例を図-2に,

建築設計本部	構造設計統括グループ	グループリーダー	工修

表-1 試験体一覧

	BDF1	BDF2	BDF3	BDF4 ^{*2} BDF7 ^{*2}	BDF5	BDF6	BDF8	BDF9	BDF10	BDF11	BDF12	BDF13			
断面形状	矩形		T形	矩形		T形	Т	形	「形	Т	形	「形			
B×D					250 × 400 mm										
スラブ	***		片幅200mm 全幅650mm	片 無 全			т幅120m ≧幅490m	m m	片幅120mm 片幅1 全幅270mm 全幅4		20mm 90mm	片幅120mm 全幅270mm			
			厚さ150mm				【さ150m	m	厚さ150mm	厚さ1	50mm	<u>厚さ150mm</u>			
せん断スパン		2000	Omm		1200mm										
[せん断スパン比]		[2	.5]		[1.5]										
コンクリート強度		33.9	33.0	57.8 (BDF4)	29.7	29.9	32.5	34.0	34.9	37.8	35.8	34.9			
fc ^{*1} (N/mm ²)	65.6	65.9	63.8	36.9 (BDF7) 63.7		63.5	57.3	58.3	58.4	58.7	59.9	59.1			
主筋			•	16-D22	2 SD490		16-D19 SD490								
(引張鉄筋比)				[3.1	10%]						2.30[%]			
スラブ筋	,	₩.	D6 SD295@75	無				D6 SD29	5@75	D6 SD295@75					
梁部補強筋	4	1-D10 SC	0390 @75	4-D10 SD785 @75			*3	4-D10	4-D10SD785 @75		2-D1 2-D6	10SD785+			
(横補強筋比)		[1.5	1%]	[1.51%]			[1.10%]	[[1.51%]		[2.06%]				
U型筋			なし	,					2-D13SD345@150			2-D13SD345@160			
*1:スラブ有	*1:スラブ有りの場合、スラブのfcは梁上部と同じ 上段:梁上部 下段:梁下部														

* 4: 2-D10SD785+2-D6SD295@75

*1:スラブ有りの場合、スラブのfcは梁上部と同じ *2:BDF4,7は既往実験試験体SB6,SB2の結果4)を引用 上段:梁上部

* 3: 2-D10SD390+2-D6SD785@50

試験体因子 表-2 M/QD=2.5 M/QD=1.5 せん断スパン 想定破壊形式 曲げ 付着 せん断 曲げ 矩形断面(Fc60一体打ち) BDF1 BDF4 矩形断面(Fc36一体打ち) BDF7 矩形断面(Fc30+Fc60) BDF2 BDF5 BDF11 T形断面(Fc30+Fc60) BDF3 BDF6 * BDF8 BDF12 「形断面(Fc30+Fc60)+接合面補強 BDF9 形断面(Fc30+Fc60)+接合面補強 BDF10 BDF13

図-2 試験体配筋例(BDF9)

試験体因子の関係を表-2に示す。表-2中の BDF4, 7 試験体は, 既往の実験結果⁴⁾を引用し ている。試験体の縮尺は実物の約1/2である。今 回はスラブ下面までを PCa とした梁を対象とし た。試験体の主筋は BDF1~10 試験体で共通と し,主筋を片側 8-D22SD490 とした。BDF11~13 の短スパン梁では梁曲げ降伏先行とするため, 片側 8-D19SD490 とした。

実験因子は, M/QD が通常スパンの 2.5 (BDF1~BDF3) と短スパン梁を想定した 1.5 (BDF4~BDF13)の2種類とした。短スパンの シリーズは、付着割裂や水平接合面に対する設

計応力が厳しくなるため片側スラブ付き (外周ラーメン)を想定した Γ型梁など 試験体数を多くした。想定建物をスパン 3.4m, スラブ厚を 300mm とし, 1/2 の縮 尺でスラブ幅 ba を 120mm, スラブ厚を 150mm とした。

それぞれの M/QD に対して①矩形断面 Fc60.②矩形断面 Fc60(PCa 側)+Fc30,③T 形断面 Fc60(PCa 側)+Fc30 を各試験体 の基本因子とした。これは、コンクリー ト打ち分けの影響と T 形梁の効果を把握 するためである。更に M/QD=1.5 の試験 体を中心に水平接合面のすべり、Γ形の 影響を評価できるように因子を選んだ。

BDF8~10, 11~13 では, 水平すべりを 防止するために、日本建築学会・現場打 ち同等型プレキャスト鉄筋コンクリート構造設 計指針⁵⁾ (AIJ・PCa 指針)中の式を用いて U 型の 鉛直鉄筋(以下U型筋と称す)を配置した。

試験体の製作は PCa 部分を打設し, 刷毛引き 等による粗面仕上げを基本とした。十分 PCa 部 分が硬化した後に、上部コンクリートの打設を 行った。なお、BDF1 は一体打ちとした。

鉄筋の機械的性質を表-3に、実験時の封緘 養生供試体から求めたコンクリート強度を表-1中に示す。

加力は地震力を想定した大野式逆対称載荷で 行った。制御は梁部材変形角で行い、交番繰り

		降伏点	引張強さ					
鋼種	材質	σy	σ tu	用途				
		(N/mm ²)	(N/mm ²)					
D6	SD295	328	489	スラブ筋 (BDF3.6)				
D10	SD390	438	596	横補強筋 (BDF1-3)				
D10	SD785	857	1034	横補強筋 (BDF4,7)				
D10	SD785	814	962	横補強筋(外周) (BDF5,6)				
D10	SD785	833	988	横補強筋(中子) (BDF5,6)				
D6	SD295	365	530	スラブ/横補強筋 (BDF8-13)				
D10	SD390	416	633	横補強筋 (BDF8)				
D6	SD785	982	1191	横補強筋 (BDF11-13)				
D10	SD785	888	1070	横補強筋 (BDF9-13)				
D13	SD345	392	560	U型筋 (BDF8-10,12-13)				
D22	SD490	534	691	梁主筋 (BDF1-3,5-6)				
D22	SD490	526	705	梁主筋 (BDF4,7)				
D22	SD490	514	686	梁主筋 (BDF8-10)				
D19	SD490	518	696	梁主筋 (BDF11-13)				

表-3 使用鉄筋の機械的性質

返しで R=0.25%~4%rad.の変形角を与え,最終 では R=10%rad.まで押し切った。計測は主要な変 形と鉄筋のひずみについて行った。

3. 実験結果

3.1 実験経過

表-4に実験結果の一覧を示す。

最大強度近傍のR=40×10⁻³ (4%) r ad.時の代表 試験体のひび割れ状況を**写真-1**に示す。

せん断スパン比 M/QD が 2.5 の BDF1~3 では 大きな差異は見られなかった。変形角が R=4% を超えると,梁端部ヒンジ位置のせん断破壊が 目立ち始め,10%rad.の大変形時には,せん断に よるヒンジゾーン損傷が大きくなった。 一方, せん断スパン比が小さい BDF4~10 で は, 特に上端主筋位置に生じた付着割裂ひび割 れが変形の増大と伴に目立つ試験体が多かった。 スラブを有する BDF6 では梁端せん断ひび割れ が進展した後, スラブ界面での水平ひび割れが R=2%rad.以上で顕著となった。BDF9 では水平 ひび割れは BDF6 より小さかった。

BDF11~13 は同様な曲げ破壊形式で,各現象 発生荷重などに差異は見られなかった。

3.2 荷重—変形関係

図-3に各試験体の梁端せん断力と梁部材変 形角 R の関係を示す。せん断力は左右の平均, 変形角は剛な左右スタブ間の変形をクリアスパ ンで除して求めた。この図中に日本建築学会・ RC 規準の梁曲げ略算式から得られた計算強度, 終局強度型設計指針^の(以下,終局指針と称す) の降伏ヒンジ回転角 Rp を考慮したせん断強度, 付着割裂強度を示す。スラブ付きの試験体では スラブ筋を曲げ強度算定時に考慮した。この図 中のせん断強度は合成梁の場合上下それぞれの 強度に基づく計算値を示し,付着割裂強度は, 上部の強度で算定した。

M/QD=2.5のBDF1~3はいずれも曲げ破壊し, 大きな靱性能を示した。BDF2とBDF3から,上 部コンクリート(Fc30)から算定した Rpを用いた せん断強度以上の強度を有していたことが分か る。また両者を比較するとスラブの効果により BDF2の方が若干曲げ強度が高くなっている。 Fc60一体梁のBDF1より,BDF3の方が最大強度 は若干高くなった。

M/QD=1.5 では,スラブ無しの BDF5 では,付

=+ F☆ /+	曲げひ	曲げひび割れ		せん断ひび割れ		,付着ひび割れ		1段目主筋降伏		2段目主筋降伏		スラブ筋降伏		横補強筋降伏		最大強度	
武职14	Q	D	Q	D	Q	D	Q	D	Q	D	Q	D	Q	D	Q	D	
	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	
BDF1	23	0.43	170	6.0	-	-	414	19.6	491	26.2			450	34.2	498	80.8	
BDF2	9	0.20	156	6.0	-	-	351	18.1	460	28.2			484	72.3	492	80.5	
BDF3	10	0.10	232	8.6	-	-	440	23.4	490	27.3	157	5.1	308	20.3	534	145.9	
BDF4	58	0.58	147	1.8	201	3.0	630	14.0	731	18.0			-	-	767	48.1	
BDF5	41	0.30	172	1.6	241	3.0	587	17.1	542	35.0			-	-	634	24.2	
BDF6	75	0.33	230	2.4	-	-	659	17.6	-	-	348	5.1	-	-	705	24.2	
BDF7	38	0.31	125	1.6	125	1.6	625	17.1	-	-			637	24.1	658	21.1	
BDF8*	18	0.11	166	1.5	-	-	645	15.3	724	23.7	356	5.6	690	18.0	724	24.0	
BDF9*	17	0.09	194	2.1	-	-	700	15.0	781	19.8	368	5.7	462	36.2	806	24.0	
BDF10*	20	0.14	228	2.9	291	4.4	502	9.6	691	16.0	336	5.4	651	28.2	770	24.0	
BDF11	23	0.17	189	2.4	-	-	530	12.1	588	15.1	290	4.8	-	-	706	48.3	
BDF12	28	0.18	151	1.7	-	-	525	11.1	591	14.4	406	7.6	-	-	706	48.2	
BDF13	26	0.12	165	1.7	-	-	554	12.0	554	12.0	294	4.2	-	-	686	48.1	

表-4 実験結果一覧

注) 正側の値 *:U型筋が降伏した試験体

着破壊したが, BDF6 では水平接合面で滑ったせん断すべり破壊が生じ,上部コンクリート強度 (Fc30)に近いせん断強度しか得られていない。 BDF6 に U 型筋を付加した BDF9 は BDF6 より良好な履歴となった。

U 型筋で水平すべりを防止しせん断破壊した
BDF8 では, Fc60 下部コンクリート(実強度
fc67.3N/mm²)によるせん断強度計算値以上の最
大強度が確認された。

通常の曲げ降伏先行設計をした BDF11~13 試 験体では, せん断や付着割裂破壊の影響は無く R=10%rad.まで良好な履歴特性を示している。

3.3 変形分離

梁の材軸方向に取り付けた変位計より曲率分

布を出し、曲げ変形とせん断変形を分離した。 図-4の縦軸に曲げ変形の割合を、実験因子に 場合分けして示す。曲げ破壊した試験体では、 全体の 60%以上が曲げ変形であるのに対し、せ ん断や付着破壊をした試験体では大変形時に 50%以下となり想定どおりの破壊が確認された。

4. 実験結果の検討

4.1 各種強度計算値との比較

表-5に各最大強度計算値と実験結果を示す。 上下のコンクリート強度が異なる試験体では、 せん断強度はそれぞれの強度で、付着割裂強度 は低い方の強度で算出した。

曲げ破壊型の BDF2~3, BDF11~13 でも, 実験

				計算結果												
計除	コン	最大	破壊	曲げ強度 せん断強度							付着		水平接合面強度			
休夕	強度	強度	モ –	~	0	Q _{su0}	0	Q _{su2}	0	7	~ 2)	τ.	a ³⁾	0	– 4)	$\tau^{(5)}$
14-11	σ _B	Q _m	۲	AIJQfu		(Rp=0)		(Rp=0.02)		6 f	ι _{bu}	- bu	Q _{bu}		AIJ ^L u	<u> </u>
	(N/mm^2)	(kN)	1)	(KN)	Q _{fu}	(kN)	Q _{su0}	(kN)	Q _{su2}	(N/mm ⁻)	(N/mm²)	ι _f	(kN)	Q _{bu}	(N/mm²)	AIJ T u
BDF1	65.6	505	F	487	1.04	916	0.55	514	0.98	3.5	5.9	1.67	837	0.60	9.3	0.74
BDE2	33.9	102	ц	187	1 01	668	0.74	484	1.02	3.5	4.2	1.20	602	0.82	6.6	1.01
	65.9	492	1	407	1.01	918	0.54	514	0.96	-	-	-	-	-	-	-
BDE3	33.0	534	F	505	1.06	658	0.81	475	1.12	3.4	4.2	1.24	594	0.90	6.6	1.09
5 100	63.8	554	1	303	1.00	905	0.59	514	1.04	-	-	-	-	-	-	-
BDF4	57.8	767	В	800	0.96	986	0.78	690	1.11	6.6	5.5	0.83	786	0.98	17.0	0.61
PDEE	29.7	624	Б	812	0.79	632	1.00	443	1.43	6.7	3.9	0.59	563	1.13	8.9	0.97
BDF3	63.7	034 B	Б		0.78	1049	0.60	737	0.86	-	-	-	-	-	-	-
PDE6	29.9	705	CI.	022	0.95	635	1.11	445	1.59	6.5	4.0	0.61	565	1.25	9.0	1.07
BDF0	63.5	705	SL	032	0.65	1047	0.67	735	0.96	-	-	-	-	-	-	-
BDF7	36.9	658	В	800	0.82	731	0.90	512	1.29	6.6	4.4	0.66	628	1.05	11.1	0.81
	32.5	704	ç	90E	6 0.90	585	1.24	341	2.12	6.3	3.4	0.53	480	1.51	7.1	1.39
DUFO	57.3	724	3	605		709	1.02	341	2.12	-	-	-	-	-	-	-
PDE0	34.0	906	ES	905	1 00	692	1.16	485	1.66	6.3	4.2	0.67	603	1.34	10.2	1.07
DDF9	58.3	800	гэ	805	1.00	992	0.81	694	1.16	-	-	-	-	-	-	-
	34.9	770	гр	702	0.07	704	1.09	493	1.56	6.4	4.3	0.67	611	1.26	10.5	1.00
BDI 10	58.4	110	гБ	195	0.97	993	0.78	695	1.11	-	-	-	-	-	-	-
DDE11	37.8	706	Г	607	1 16	743	0.95	520	1.36	5.5	4.9	0.89	598	1.18	7.9	1.21
BUFII	58.7	700	F	007	1.10	996	0.71	697	1.01	-	-	-	-	-	-	-
	35.8	706	F	607	1 16	716	0.99	501	1.41	5.5	5.3	0.96	645	1.09	10.7	0.89
DDF 12	59.9	700	F	007	1.10	1010	0.70	707	1.00	-	-	-	-	-	-	-
BDE13	34.9	686	E	506	1 15	704	0.97	493	1.39	5.6	5.2	0.94	638	1.08	10.5	0.89
DDF13	59.1	000	r	590	1.15	1001	0.69	701	0.98	-	-	-	-	-	-	-

F:曲げ破壊, FS:曲げ降伏後せん断破壊, FB:曲げ降伏後付着破壊, B:付着破壊, S:せん断破壊, SL:せん断スリップ破壊
上端筋に対する低減は考慮せず 3) Q_{hu}=(Σφ・τ_{hu}, j_t) 4) τ_u=(μ·Ps・σ_{wv} <0.3 σ_B(σwy≦800N/mm²) 5) τ m=Qm/(0.9db)

値と Rp=0.02 時せん断強度計算値の比(Qm/Qsu2) が 1.0 以上の場合も多いが, せん断破壊の傾向は 見られなかった。せん断破壊型の BDF8 では下 部コンクリート強度で算定した Rp=0 時のせん 断強度を実験値が上回った。付着破壊型の BDF9,10 では付着指標 τ_{bu}/τ_f は 0.67 であり計算上 付着割裂破壊の可能性が高かったが実際は曲げ 降伏したこと,および T 形 BDF9 の Qm/Qbu は 1.34 で矩形 BDF5 の 1.19 倍, Γ 形 BDF10 の Qm/Qbu は 1.26 で矩形 BDF5 の 1.12 倍であることから, スラブ効果で付着割裂強度が上昇するという結 果が得られた。

総合的に上部の Fc30 のコンクリート強度で上 部鉄筋の低減率(0.8)を考慮せず付着割裂強度を 算定しても、十分安全に評価できることが実験 から分かった。 打設時にコンクリートのブリー ジングが小さいことが要因と考えられる。

4.2 接合面のせん断すべり性状

接合面の強度が小さい BDF6 と同様の配筋で, U 型筋で水平すべりを防止した BDF9 の接合面

(打ち継ぎ面)のすべり量を比較して図-5に 示す。この結果より, BDF9の両方向のすべり量 は BDF6 に比して小さく,最大強度発揮時の R=2%rad.時には BDF6 の 1/1.8 程度であり, U型 筋は有効であることが確認された。

5. まとめ

下部 PCa 部分と上部現場打設部分のコンクリート強度が異なる合成梁の構造実験を行った。 その結果,下記に示すことが分かった。

(1) スラブを付加した合成梁では水平接合面の すべりを防止すれば矩形梁より, せん断強度

や付着強度の増大が見 込まれる。ただし,水 平面のすべりを防止し ない場合には,せん断

- ひび割れから水平すべりひび割れが連続して 生じ,最大強度は低くなった。
- (2) スラブを付加した合成梁のせん断強度は、全体を下部の高強度コンクリート矩形梁として評価できた。
- (3)付着強度は、上部、下部のコンクリート強度 で上下端それぞれ評価可能である。ただし、 ハーフ PCa の場合、上部コンクリート打設時 のブリージングは小さいため上端筋の低減係 数は考慮しなくてよいと考えられる。
- (4)曲げ降伏を先行させ、かつ水平面のすべりを AIJ式⁵⁾で防止するように設計した梁は十分な 強度と靱性能を有していた。
- (5)AIJ式⁵⁾で横補強筋以上のすべり防止筋が必要 な場合,U型筋の挿入が有効であった。

参考文献

- レオンハルトのコンクリート講座 1~6, 鹿 島出版会
- 浜田真ほか:水平打継ぎを有するはり部材の せん断耐力に関する実験研究(その1), AIJ 大会梗概集,昭和60年10月, pp.515-516
- 林和也ほか:異種強度コンクリートを用いた プレキャスト RC 梁の力学性状に関する研究, AIJ 大会梗概集,構造Ⅱ, 1994.9, pp.979-980
- 3) 永井覚ほか:高強度材料を使用した高層 RC 造短スパン梁の実験的研究, JCI 年次論文報 告集, Vol.17 No.2, pp.583-588, 1995.
- 5) 日本建築学会:現場打ち同等型プレキャスト 鉄筋コンクリート構造設計指針(案)・同解 説(2002)
- 6) 日本建築学会:鉄筋コンクリート造建物の終 局強度型耐震設計指針・同解説 (1990)