論文 PC 圧着関節工法における PC 鋼棒および PC 鋼より線の付着特性に関 する実験的研究

今井 孝*1·松崎 育弘*2·坂田 弘安*3·杉山 智昭*4

要旨:筆者らは建築物の損傷を制御する方法として,PC 圧着関節工法を提案している。この工法では,PCaの柱および梁部材を圧着接合し,圧着に用いた PC 鋼材の緊張力を 50%程度とすることで,圧着目地部(関節部)に PC 鋼材の伸び出しによる弾性的な回転を生じさせ,損傷を制御する。本報では,PC 鋼棒および PC 鋼より線の付着特性について検討を行い,さらに部材関節部の弾性回転挙動を把握した。

キーワード: PC 圧着関節工法,損傷制御効果, PC 鋼材の付着特性,弾性回転

1. はじめに

著者らは地震時の建物の損失を制御する方法 の一つとして、PC 圧着関節工法を提案している。 本工法は、PC 鋼材を用いて PCa 部材を圧着接合 する際に、初期プレストレス導入力を柱梁圧着 の場合 50%程度、柱圧着の場合 30~50%程度に 設定することで、関節部に PC 鋼材の伸び出しに よる回転変形を許容し、変形を関節部に集中さ せるものである。関節部の回転変形が架構の変 形の大部分を占めることで、損傷制御効果は高 くなるといえる。よって本工法において、設計 段階から架構の履歴性状を知るためには、PC 鋼 材の伸び出し変形を評価する必要がある。

本研究では, 柱梁圧着用の PC 鋼より線および

柱圧着用の丸鋼 PC 鋼棒について, 付着特性を明 らかにするとともに, その歪み度分布のモデル 化を行い, 部材の曲げモーメント M-回転角 *θ* 関係を確立することを目的とする。

2. 梁型試験体(PC 鋼より線)の実験概要

2.1 試験体要因

表-1に梁型試験体一覧,図-1に梁型試験 体形状を示す。試験体は実大の約1/2.5~1/3スケ ールとし,片側が圧着接合された梁部材を想定 した。また,梁断面をb×D=230×420(mm),コ ンクリート設計基準強度(Fc)を90(N/mm²)とした。 各試験体に2本ずつ配置した鋼製シース管に, 防錆を目的にエポキシ被膜された PC 鋼より線

	試験	<u>験体形状</u> <u>面</u> 定着	状 清 リート L Fc m) (N/mm ²)	主筋	せん断 補強筋	幅止め筋	プレストレス用PC鋼材									ヹメントグラウト				
No.	断面 (mm)						本数	材種	呼 び 径	公称	降伏	ヤング	初期プレス	シース 管径	圧縮	ヤング 仮物				
	×	L		///						可面很 a _p	σy^{*2}	E _{exp}	P _{ini}	内法/外法	_G σ _B	₆ E				
	(mm)	(mm)								(mm ²)	(N/mm^2)	$\times 10^{5} (N/mm^{2})$	(kN)	(mm)	(N/mm^2)	$\times 10^4 (N/mm^2)$				
1							2				1642	2 14	0.25Py*3/本		78	2.28				
2										5					1042	2.14	0.50Py ^{*3} /本		45	I
3			90				1								92	2.27				
4	230	230 × 1522 420			4 010	4 010	DE@7E	D6@200	DC@200	3	エポキシ防錆	エポキシ防錆			1631	2.12			92	2.27
5	×			sD295A	SD295A	SD295A		被膜有り 5 PC鋼より線 ^{*1} 10	12.7	98.71				91/96	92	2.27				
6	420						5					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1							
7											1602	2 16			20	-				
8							10				1092	2.10			72	2. 47				
9							10								44	-				
*1 1	す種∶SV	VPR7B,	*2 σyl	よ0.2%オ	フセット	法により算	[出,*	3 Py: 規格降伏	荷重((=156kN)										

表-1 梁型試験体一覧

*1 東京理科大学大学院 工学研究科建築学専攻 (正会員)

*2 東京理科大学 工学部建築学科教授 工博 (正会員)

*3 東京工業大学 建築物理研究センター准教授 工博 (正会員)

*4 東京理科大学 工学部建築学科助教 工博 (正会員)

(φ12.7, SWPR7D)を挿入して緊張力を導入し, セメントグラウトを充填した。

変動要因は、初期プレストレス導入力(0.25Py/ 本,0.50Py/本(Py:PC 鋼材規格降伏強度)),セメン トグラウト圧縮強度(20,40,90(N/mm²))および PC 鋼より線の本数(1,3,5 本)の3 要因とした。

2.2 実験方法

図-2に加力計測方法,表-2に載荷サイク ルを示す。加力方法は自己反力型の一方向繰り 返し漸増載加とした。ジャッキ荷重はセンター ホール型ロードセルで計測し,伸び出し量はア ンカーヘッドと定着板の相対変位で計測した。

3 梁型試験体の実験結果および検討

3.1 荷重 P-伸び出し量δ関係の比較

3.1.1 初期プレストレス導入力 P_{ini}

図-3に P_{ini} =0.25Py/本の No.1 と P_{ini} =0.50Py/本の No.2 の P- δ 関係を示す。荷重がそれぞれの P_{ini} と等しくなった時点で伸び出しが開始しており、その後の性状は近似していることから、 P_{ini} が付着性状に与える影響は小さいといえる。

3.1.2 セメントグラウト圧縮強度 G σB

図-4に $_{G\sigma B}$ を変動要因とした、伸び出し後 増分荷重 ΔP ー伸び出し量 δ 関係を示す。 Δ P=0.5Py/本に達するまでは $\Delta P - \delta$ 関係に大きな 差異はなく、 $_{G\sigma B}$ による影響はないといえる。

3.1.3 PC 鋼より線の本数

図-5に一本あたりの伸び出し後増分荷重 \triangle P₁ー伸び出し量 δ 関係を示す。 \triangle P₁は \triangle P ϵ PC 鋼より線の本数で除した値である。PC 鋼より線 は本数に関わらず同様の性状を示すといえる。

3.2 歪み性状

図-6に No.4 の歪み度分布を示す。載荷中は 荷重が P_{ini} と等しくなると,引き抜き端の歪み度 が増加し始め,付着区間全域にかけてほぼ直線 的な分布になっている。また,その直線の勾配(付 着応力度 τ に相当)は,ほぼ一定のまま大きくな っており,同時に付着区間の長さが長くなって いることがわかる。

次に除荷していくと,引き抜き端から先行し

て歪み度が減少していき,載荷中の直線と逆勾 配で分布している。除荷完了時には,引き抜き 端の歪み度は初期歪み度よりも小さくなってお り, P_{ini}が減少しているといえる。

3.3 付着応力度 τ と付着周長 φ

3.2 に示したように、PC 鋼より線は付着劣化 がなく、摩擦的な挙動で伸び出す「弾性的な付 着特性(弾性付着)」を有するといえる。そこでこ の弾性付着を評価するため、付着強度 τ_{max} と付 着周長 ϕ について考察する。

ここで、PC 鋼より線一本(素線 7 本)あたりの 付着周長 ϕ_1 を図-7のように仮定する。本数が 複数の場合、群の効果は考慮せず、付着周長 ϕ_n は本数倍で考えることとした($\phi_n = \phi_1 \times n$)。

3.3.1 付着応力度 r

図-8に No.3,4,5 の平均付着応力度 τ -増分 歪み度積分値 \angle S 関係を示す。 τ は歪み度のばら きが少ない断面 4 から 8 の区間から, 図-7 の 式(1)を用いて算出する。 \angle S は断面 4 と 8 の歪 み度の 2 点を通る直線で決まる三角形分布の面 積とする。 τ は \angle S が生じるとすぐに 0.6 (N/mm²)程度を示し, 徐々に増加した後に \angle S = 2.5(mm)前後で付着強度 τ_{max} =1.1 (N/mm²)に達 し, その後は τ =1.1(N/mm²)を維持している。

3.3.2 付着周長*ϕ*

本数が複数の場合でも付着強度 τ_{max}が1本の 場合と等しいと仮定すると,付着周長 φ は**式(2)** から算出される。

図-9より、PC 鋼より線一本あたりの付着周 長 ϕ_1 を本数倍した付着周長 ϕ_n と図-7の式(2) から求めた付着周長 ϕ を比較すると、ほぼ同等 であり ϕ_n は ϕ_1 の本数倍で評価できるといえる。

4. 梁型試験体の M-θ関係の推定

実験結果より歪み度分布および付着応力度を モデル化し、梁端の曲げモーメント Mー回転角 θ 関係を確立し、既往の研究から得られた M- θ 関係との評価を行う。この提案モデルの適用 範囲は、PC 鋼より線 (ϕ 12.7,SWPR7D)の本数が

1~10本, _{G σ B}が 20~90(N/mm²)の範囲とする。

図-10 に歪み度分布モデル,図-11 に平均付 着応力度 τ -引き抜き端歪み度 $\Delta \varepsilon$ 関係モデル, 図-12 に引き抜き端が経験した最大増分歪み度 $\Delta \varepsilon_{max}$ -除荷完了時に初期歪み度 ε_{ini} から減少 した引き抜き端歪み度 $\Delta \varepsilon_{lost}$ 関係モデルを示す。 図中の諸値は図-8をもとにし,載荷中,除荷 中および再載荷中の3状態を考えることとする。 ・載荷中:Pに対する引き抜き端増分歪み度 $\Delta \varepsilon$ から図-11(a)より載荷中の付着応力度 $\tau^+ \varepsilon x$ める。歪み度分布を直線分布とし, $\tau^+ \varepsilon \phi_n$ (=n × ϕ_1)を用いて必要付着長さを求め,歪み度分布 を決定する(図-10(a), (b))。

・除荷中:Pの減少に伴う引き抜き端減少歪み度 $\Delta \epsilon^{-}$ を用いて、図-11(b)より除荷中の付着応 力度 τ^{-} を求め、歪み度分布を決定する(図-10(c))。また、除荷終了時は図-12 より $\Delta \epsilon_{lost}$ を求め、歪み度分布を決定する(図-10(d))。

・再載荷中:図-10(d)に(a)を足し合わせる。

図-13 に歪み度分布モデル,図-14 に M- θ 関係モデルを示す。M は断面解析より求め,そ のときの PC 鋼より線に働く引張力と提案モデ ルを用いて θ を算出した。M は小さく評価され ているが θ は概ね適合しており,M- θ 関係の予 測可能性を示したといえる。

5 柱脚試験体(PC 鋼棒)の実験概要

5.1 試験体要因

表-3に柱脚試験体一覧,図-15 に柱脚試験 体形状を示す。試験体は柱脚部を含む一階柱部 分とし,実大の約 1/2.5~1/3 スケールを想定した。 柱断面を b×D=320×320(mm)とし,Fc=60 (N/mm²)とした。各試験体に 8 本ずつ鋼製シース
管を配置し、丸鋼 PC 鋼棒(φ13)を緊張後、セメントグラウト(50(N/mm²))を充填した。

また,実際の本工法と同様に,施工性の向上 などを目的とした高さ 140(mm)の台座ブロック を柱部材とスタブの間に設け,目地モルタル (50(N/mm²))を敷いた。

変動要因は,初期プレストレス導入力 (0.40 Py,0.60Py),軸力(軸応力度 σ₀=0.1Fc,0.0Fc,0.4Fc (N/mm²))および PC 鋼棒の配筋(外側配筋,内側 配筋)の3要因とした。

5.2 実験方法

図-16に加力方法,表-4に載荷サイクルを 示す。載荷は部材角 R による変位制御とし,柱

図ー14 Mー
$$\theta$$
関係モデル

	軸応力度	試験体形状					プレストレス用PC鋼材										
No.		断面	定着	コンクリート	主筋	せん断 補強筋	本数	材種	呼び径	公称	降伏	ヤング	初期プレス トレス導入力 P _{ini}	· 配筋位置	シース	圧縮	ヤング
		(mm)	長さ							断面積	強度	係数			管径	強度	係数
	σ_0	×	L	Fc						ap	σy*2	Eexp			内法/外法	$_{\rm G}\sigma_{\rm B}$	β
	(N/mm ²)	(mm)	(mm)	(N/mm ²)					IT.	(mm ²)	(N/mm^2)	$\times 10^{5} (N/mm^{2})$	(kN)		(mm)	(N/mm^2)	$\times 10^4 (N/mm^2)$
10	0.0Fc																
11	0. 1Fc												0.40Py ^{*2} /本				
12	0.4Fc		ᆉᆬᄜ		王筋									从侧配笛			
13	0.0Fc	320 × 320	柱区间 2215, スタブ区間 925	60	16-D6 SD295A, 隅筋 4-D10 SD295A	D6@70 SD295A	8	丸鋼 PC鋼棒 ^{*1}	13	132. 7	1196	2.01		9 F HJ HC AU	20/23	62	1. 44
14	0. 1Fc												0.60Py ^{*2} /本				
15	0.4Fc																
16	0.0Fc																
17	0. 1Fc												0.40Py ^{*2} /本	内側配筋			
18	0.4Fc																

表-3 柱脚試験体一覧

頭部を水平加力点とした正負交番繰り返し漸増 載荷とした。また柱頭部にパンタグラフを設け, 面外拘束を行った。軸力はアンボンド PC 鋼棒(ϕ 23)により導入することとし,試験体1体につき 軸応力度を $\sigma_0=0.1$ Fc,0.0Fc,0.4Fc(N/mm²)の順に 変えた上で載荷を行った。

6 柱脚試験体の実験結果および検討

6.1 歪み性状

図-17 に No.11 の歪み度分布を示す。載荷中 は荷重が P_{ini} に達すると, 危険断面の歪み度が増 加し始め, 歪み度分布の勾配は一定のまま, 付 着区間全域にかけてほぼ直線的な分布になって いる。そして, 増分歪み度 $\Delta \epsilon = 1000(\mu)$ を超え た区間では, 付着劣化により勾配が徐々に緩や かになり始めていることがわかる。

除荷中は危険断面から歪み度が減少していき, 載荷中の直線と逆勾配で分布する。また,除荷 完了時には歪み度の残留はほぼ見受けられない。

6.2 付着特性の検証

図-18にNo.11,14,17の平均付着応力度 τ −増 分歪み度 ∠ ε 関係を示す。 τ は**図**-17 に示す a −b 区間より求め, ∠ ε は a のゲージの値とした。 6.2.1 初期プレストレス導入力 P_{ini}の違い

図-18 の P_{ini} =0.40Py である No.11 と 0.60Py である No.14 を比較すると,履歴性状はほぼ一 致しており, P_{ini}による影響はないといえる。

6.2.2 軸力の違い

図-19 に軸応力度を変動要因(σ₀=0.0Fc,0.1 Fc,0.4Fc(N/mm²))とした歪み度分布を示す。差異 は見られず、軸力による影響はないといえる。

6.2.3 配筋位置の違い

図-18のPC鋼棒を外側配筋したNo.11と内側 配筋した No.17 を見ると、若干のばらつきは見 られるが、 τ_{max} はほぼ同程度となっている。よ って配筋位置による影響はないといえる。

7. 柱脚試験体の M-θ 関係の推定

PC 鋼棒についても歪み度分布および付着応力 度 τ をモデル化することで, $M - \theta$ 関係の評価を

図-23 M- θ 関係モデル

行う。適用範囲は、 $_{G}\sigma_{B}$ が $60(N/mm^2)$ 程度、軸応 力度が $\sigma_{0}=0.0Fc\sim0.4Fc(N/mm^2)$ の範囲とする。

図-20 に歪み度分布モデル,**図**-21 に付着強 度を示す。図中の諸値は**図**-18 をもとにした。 ・載荷中: τ が一定のまま増分歪み度 $\Delta \varepsilon$ が上 昇していき, $\Delta \varepsilon = 1000(\mu)$ に達すると τ が減少 していく。そのときの τ は1.8(N/mm²)を示す(**図** -20(a))。その傾向は,**図**-21 に示すように, ほとんどの PC 鋼棒で確認できる。その後 τ =0.8(N/mm²)程度にまで減少する(**図**-20(b))。 ・除荷中: τ は徐々に減少していき, τ が載荷 時と逆方向に**0**6(N/mm²)程度で概ね一定となる

時と逆方向に $0.6(N/mm^2)$ 程度で概ね一定となる (図-20(c))。そして $\Delta \epsilon = 0(\mu)$ に低下した区間で は ϵ はそれ以下にはならず(図-20(d)),除荷完 了時には図-19 に示すように、 $\Delta \epsilon$ はすべての 区間でほぼ $0(\mu)$ になっている(図-20(e))。

図-22 に歪み度分布, **図-23** に No.11 の Mθ 関係モデルを示す。M は実験値とし, θ は提 案モデルから算出した。実験結果と比較すると 概ね適合性が良いといえる。

8 結論

PC鋼より線およびPC鋼棒の付着実験を行い, 付着特性に関して以下の知見を得た。

1)PC 鋼より線

・付着応力度は τ_{max}=1.1(N/mm²)で一定となる。

初期プレストレス導入力の違い、セメントグ
ラウト圧縮強度および本数による影響はない。

・本数が複数の場合も、付着周長は1本あたり の付着周長の本数倍で評価できる。

2)PC 鋼棒

・付着応力度は τ_{max} =1.8 (N/mm²)で一定となり、 その後 τ =0.8(N/mm²)に減少する。

・初期プレストレス導入力,軸力および配筋に よる影響はない。

3)提案モデルは $M - \theta$ 関係を概ね評価できる。

参考文献

1)岡野大志,松崎育弘,坂田弘安,池澤誠:PC 圧着関節工法を用いた損傷制御架構の構造性能 に関する実験的研究,日本コンクリート工学年 次論文報告集,Vol. 27, No. 2, pp. 547-552, 2005