論文 増厚されたRC床版の静的載荷試験による検討

稲葉 尚文*1・本間 淳史*2・今村 壮宏*3・徳光 卓*4

要旨:近年,上面増厚工法は RC 床版の補修工法として広く活用されているが,近年,一部 の橋梁において劣化を生じた事例も確認されてきている。筆者らは,その劣化原因,劣化過 程,メカニズムを明らかにするために,今回は基礎実験として,劣化に伴って撤去された上 面増厚補修床版の静的載荷試験を行い,耐荷力の確認と耐荷性能の評価を行った。その結果, 耐荷力は増厚コンクリートと既設床版との付着の影響を大きく受けることが確認できた。 キーワード: RC 床版,上面増厚工法,静的載荷試験,付着

1. はじめに

東,中,西日本高速道路㈱(以下 NEXCO という。)が管理する橋梁において,年々増加する 交通量と車両の大型化による繰返し荷重や,老 朽化等の要因により,床版の損傷が発生してき ている。

そのような床版の補修には種々の工法がある が,NEXCOでは,損傷が広範囲に及び局所的な 補修工法では対処できない場合,床版上面増厚 工法が採用されている事例が多い。また、本工 法を塩害対策として橋面からの塩分の浸入を防 止するために施工している事例もある。床版上 面増厚工法は,既設床版の上面を切削したのち に新たなコンクリートを打設して一体化する工 法であり,床版の耐力回復が期待できる。さら に、橋梁下から床版下面の状態が目視確認でき るため,再劣化や損傷の進行が点検によって容 易に把握できる利点がある。

しかし,近年,一部の橋梁において上面増厚 工法で補修されたコンクリート床版に損傷を生 じた橋梁も確認されている。その中で,損傷度 の進行にともない,舗装のポットホールや旧コ ンクリートの砂利化さらに床版下面の剥落が発 生している橋梁もある。そこで本検討では今後 行われる検証実験の基礎実験として,床版の取 替工事に伴って撤去された上面増厚補修床版の 静的載荷試験を行い,損傷状態と耐荷力等の調 査を行った。その結果を報告するものである。

2. 撤去床版

2.1 諸元

昭和 50 年に供用された鋼 I 桁橋の RC 床版に おいて,平成 9 年に上面増厚工法による床版補 修が行われたが,補修床版の再劣化が確認され た。その後,平成 16 年に既存の資料及び現地踏 査結果等をもとにして,床版の劣化度を評価す るための劣化調査が行われ,抜本的な対策とし て PC 床版への取替が行われた。橋梁諸元を表-1 に示す。

路線	高速自動車国道 中央自動車道			
橋長	149.95m			
径間長	3@30.750+2@28.000			
有効幅員	8.5m			
斜角	$81^{\circ} 00' \sim 84^{\circ} 30'$			
上部工形式	3 径間連続非合成鋼 I 桁橋+2 径			
	間連続非合成鋼I桁橋			
適用示方書	昭和 47 年道路橋示方書			

表一1 橋梁諸元

2.2 撤去床版の損傷状況

当該橋梁は、平成9年に上面増厚による補強

*1 (株)高速道路総合技術研究所 道路研究部橋梁研究室主任 工修 (正会員) *2 (株)高速道路総合技術研究所 道路研究部橋梁研究室長 工博 (正会員) *3 (株)高速道路総合技術研究所 道路研究部橋梁研究室 工修 *4 (社) プレストレスト・コンクリート建設業協会 工博 (正会員) が施されたにもかかわらず,平成13年以降も遊離石灰や写真-1に示すようなはく離の進行や写真-2に示すようなひび割れ部からの漏水が見られ,損傷が進行していると判断された。

また,撤去した床版の断面状況を**写真-3**, 4に示す。切断面の状況から以下の事項が確認 された。

写真-1 床版下面の状況

写真-2 床版下面の漏水状況 1)増厚コンクリートと既設床版上面の剥離は, 床版支間の中央付近で顕著であった。

2)切断面の損傷状況で,既設床版の上端鉄筋位 置にひび割れが見られる供試体では,床版下面 に亀甲状のひび割れが進展しており,さらに遊 離石灰の析出が確認された。一方,増厚コンク リートと既設床版上面間の剥離のみが見られる 供試体では,床版下面には微細なひび割れが生 じている程度であり比較的健全な状態であった。 3)増厚コンクリート上面には塗布系の防水工が 施してあるが、中央分離帯側の縁石の下面部分 は防水対策が不十分であり、コンクリートの砂 利化が見られた。

写真-3 損傷状況(撤去断面)

写真-4 遊離石灰の発生状況(損傷程度大) 2.3 撤去床版の損傷ランク

撤去された床版(10 体のうち,桁端部や,形 状の異なる床版を除いた 6 体)の損傷程度を表 -2に示す。損傷ランクは,「設計要領第二集 橋梁保全編」¹⁾に示される損傷度判定規準を基に 床版下面の損傷度を判定した。ここで,ランク B は比較的損傷が進んだ状態であり,ランク E は 外観上健全な状態を表している。

表-2 撤去床版のランク分け

ハ°ネル No.	損傷状態	損傷 ランク
J	SFC~既設床版上面の剥離(支間 中央部)	Е
Н	SFC〜既設床版上面の剥離、上筋 位置水平ひび割れ、下縁かぶりコ ンクリートに析出物	B, a
А	増厚~既設床版上面の剥離(支間 中央部)	E
Ι	増厚~既設床版上面の剥離、上筋 位置水平ひび割れ	В
В	増厚~既設床版上面の剥離(支間 中央部)	Е
G	増厚〜既設床版上面の剥離、上筋 位置水平ひび割れ、下縁かぶりコ ンクリートに析出物	В

3. 静的載荷試験

3.1 供試体

表-2に示す6体の撤去床版を供試体とした。 供試体の支点部は,既設鋼I桁から剥離機によ り撤去する際,ジベル筋によって傷んでいたた め,その部分をモルタルにて成形した。成形状 況を写真-5に示す。また、その他の不陸に対 しては,供試体を架台にセットする際、石膏に より調整した。

また,アスファルト舗装については,既往の 実験との比較および耐荷性能の検討が困難にな るため,載荷点付近の舗装を撤去した(□600 ×600)。

3.2 載荷方法

支点部は2辺単純支持とし、支間長は既設床版 支間(L=2.5m)とした。また、載荷位置は支間中 央とし、載荷板形状は道路橋示方書に示される 載荷面の辺長:200mm×500mm(t=40mm)とした (図-1参照)。

載荷荷重は,供試体および載荷装置とのなじみ 等を勘案し,図-2,表-3に示すサイクルで 載荷した。また,400kN以降は終局状態まで単 調載荷した。

3.3 計測項目および方法

載荷試験での計測位置を図-3に示す。載荷 荷重の計測はロードセル,床版の鉛直変位の計 測は高感度変位計,床版下面のひずみ計測はコ ンクリートひずみゲージにより行った。また既

写真-5 支点成形状況

図-2 載荷パターン

載荷荷重(kN)	載荷サイクル
100	×3回(~徐荷)
200	×1回(~徐荷)
300	×1回(~徐荷)
400	×1回(~徐荷)

設床版と増厚コンクリートの相対変位計測には π型変位計を使用した。

図-3 計測位置

3.4 試験結果

載荷試験における各供試体パネルの最大荷重 および1/2L断面載荷点直下の鉛直変位(D-2)を表 -4に,既設床版厚と最大荷重の関係を図-4 に示す。既設床版コンクリートの圧縮強度の平 均値は,24.6~28.3N/mm²であった。増厚コンク リートの厚さは表-5に示すとおりであり,圧 縮強度試験については,厚さが薄く試験してい ないが,設計基準強度は24N/mm²である。また, 床版の曲げ耐力の計算値は,完全合成とした場 合 500kN,非合成とした場合385kNである。

No.	損傷 ランク	最大 荷重 (kN)	鉛直変位 (mm)	破壊形態	既設床 版厚 (mm)
J	Е	690	18.8	押抜きせん 断破壊	195
Н	В	588	23.8	押抜きせん 断破壊	180
А	Е	588	17.5	押抜きせん 断破壊	200
Ι	В	640	24.5	曲げ破壊	195
В	Е	822	21.6	押抜きせん 断破壊	205
G	В	621	18.5	押抜きせん 断破壊	185

表-4 最大荷重と鉛直変位

図-4および表-4の既設床版厚より,曲げ 破壊した供試体 I と破壊時に著しく偏心して押 し抜けた供試体 A を除けば,最大荷重(破壊荷 重)は既設床版厚の影響を受けていることが認 められる。これは,増厚コンクリートが剥離し た場合,載荷に伴うせん断応力を主に既設床版 が負担することを示すものと考えられる。また,

図-4 既設床版厚と最大荷重の関係

ランクBの供試体(H, I, G)の最大荷重は588 ~640kNであり、ランクEの供試体B,Jの最大 荷重 690~822kNに比べて小さくなる傾向とな ったが、設計荷重(100kN)に対しては十分な耐 力余裕を有していた。また、供試体Iは曲げ破壊 を生じたが、この供試体は既設床版前面にわた り増厚コンクリートが剥離していたため、載荷 の初期から既設床版と増厚コンクリートにずれ を生じ、非合成版のように挙動していたことを 確認している。そのためせん断耐力に比べて曲 げ耐力の低下が大きくなったものと推察される。

4. 損傷調査および載荷試験結果と耐荷性能との 相関性の検討

4.1 断面寸法による押抜きせん断耐力の検討

外観目視調査において実測された断面寸法よ り, 増厚コンクリートと既設床版を一体とした 断面が有する押抜きせん断耐力を算出し,供試 体の性能を評価する。

押抜きせん断耐荷力の算定は以下の二式によ った。

(1) 土木学会式(コンクリート標準示方書[構造性能照査編])

$$V_{pcd} = \beta_{d} \cdot \beta_{p} \cdot \beta_{r} \cdot f'_{pcd} \cdot u_{p} \cdot d/\gamma_{b}$$

ここで、 $\beta_{d} = {}^{4}\sqrt{(1/d)}$ 、 $\beta_{p} = {}^{3}\sqrt{(100 \cdot p)}$
 $\beta_{r} = 1 + 1/(1 + 0.25 \cdot u/d)$
 $f'_{pcd} = 0.2 \cdot f'_{ck}$
 $u_{p} = u + 2(d/2)\pi$: 設計断面での載荷面
の周長 、 $u = 2(a+b)$: 載荷面の周長
 $\gamma_{b} = 1.0$

(2) 松井式(「鉄筋コンクリート床版の押抜き せん断耐荷力の評価式」²⁾より)

 $P_{s} = \tau_{s.max} \{2(a+2X_{m})X_{d}+2(b+2X_{d})X_{m}\} +$

$$\sigma_{t,max} \{2 (4C_d + 2d_d + b) C_m + 2 (a + 2d_m) C_d\}$$

ここで, τ_{s.max}=0.252・f'_{ck}-

0.000246・f[']ck² (kgf/cm²) σ_{t.max}=0.583・(f[']ck⁾^{2/3} (kgf/cm²) X_m, X_d: 主鉄筋, 配力鉄筋に直角な断面 の引張側コンクリートを無視した断面 の中立軸深さ

C_m, C_d: 主鉄筋, 配力鉄筋のかぶり厚さ
主要な入力値は以下のとおりである。

H:床版厚(実測值:表-5参照)

コンクリートの圧縮強度

f'ck=26.3 N/mm² (強度試験の平均値) コンクリートの弾性係数

Ec=22.6 kN/mm² (強度試験の平均値)

図-5 耐荷力の算定モデル

押抜きせん断耐力の算定結果を表-5に示す。 ここで,設計断面とは計画された断面(既設 床版厚 190mm+増厚コンクリート厚さ 50mm) での設計押抜きせん断耐力である。設計断面で の押抜きせん断耐力は約 1000~1100 kN となる。

設計断面から求めた計算値と各供試体の断面 寸法から求めた押抜きせん断耐力との比は,最 も健全であった供試体 B が 1.00,供試体 I が 0.97 であるのに対し,その他の供試体では 0.91~0.88 となり,設計値に対して 9~12%耐荷力が小さく なっている。

表-5 供試体の押抜きせん断耐力の計算値

	押抜きせん断耐力 (kN)					
	土木学会式 (V _{pcd})		松井式	(P _s)	床版厚	
	計算値	比	計算値	比	(瑁厚+既設) (mm)	
設計 断面	1006		1111		50 + 190 = 240	
А	888	0.88	1022	0.92	25 + 200 = 225	
В	1006	1.00	1118	1.01	30 + 205 = 235	
G	888	0.88	1022	0.92	25 + 185 = 210	
Н	888	0.88	1020	0.92	30 + 180 = 210	
Ι	976	0.97	1090	0.98	40 + 195 = 235	
J	917	0.91	1047	0.94	25 + 195 = 215	

*表中の比は、各供試体の断面計算値に対する比率を示す。

4.2 静的載荷試験からの検討

前述の押抜きせん断耐力の計算値と載荷実験 での破壊荷重との比を**表-6**に示す。

計算値と破壊荷重の実測値との比は土木学会 式で 0.66~0.82, 松井の式で 0.58~0.74 の範囲で あった。

実験結果と計算値に大きな差が生じた原因に ついては、押抜きせん断耐力を算出するこれら の式は載荷面の周囲に沿ってせん断力が一様に 分布することを前提として定義されており、破 壊の状態としては載荷面の全周にわたってせん 断破壊を生じる状態と考えられる。一方、実験 では破壊面が載荷面の全周に及ばず一部分にお いて破壊が生じていたことから、破壊荷重が小 さくなったと考えられる。

計算上の押抜きせん断耐力は実験での破壊荷 重と同義ではないことも考えられるが,供試体 I を除く全ての供試体が押抜きせん断による破壊 であったことから,計算値との相関性を十分有 していること判断し,ここでは各供試体を相対 的に評価することにより増厚コンクリートの剥 離や水平ひびわれの有無が疲労耐久性に与える 影響を検討する。

比較的健全であると思われる供試体 B に対し て供試体 A, G, H は概ね 15~20%程度,供試 体 J が 10%程度,耐力が小さくなっている。

この内,供試体 G,H は増厚コンクリートと

		押抜きせん断耐力 (kN)					
	破壊荷重 (P _{max})	土木学会式(V _{pcd})			松井式 (P _s)		
		計算値	$P_{max} \swarrow V_{pcd}$	供試体B との比	計算値	P _{max} /P _s	供試体B との比
供試体A	588	888	0.66	0.81	1022	0.58	0.78
供試体B	822	1006	0.82	1.00	1118	0.74	1.00
供試体G	621	888	0.70	0.86	1022	0.61	0.83
供試体H	588	888	0.66	0.81	1020	0.58	0.78
供試体I	(640)	976	(0.66)	(0.80)	1090	(0.59)	(0.80)
供試体J	690	917	0.75	0.92	1047	0.66	0.90

表-6 実験結果と押抜きせん断耐力の計算値との比較

載荷点直下付近の既設床版との界面が剥離して おり,既設床版上面の砂利化が顕著であった。 供試体Jは同様な界面剥離を生じていたが,既設 床版上面の状態は比較的健全であった。(このよ うな床版は不完全合成の状態にあると考えられ る。)床版上面に作用する荷重を増加させると, 増厚コンクリートと既設床版の界面に作用する 水平せん断力は増加するが,同時に界面の摩擦 力の増加により水平せん断耐力も増加すると考 えられる。界面が砂利化すると摩擦力の伝達が 正常に行えなくなると考えられ,合成度の低下 が押抜きせん断耐力の低下に影響を与えた可能 性がある。

供試体 J は供試体 B と比較して大きな耐荷力 の低下は見られなかったが、この床版は床版内 部に水平ひびわれが生じていたものの損傷程度 は比較的健全であったため、水平ひびわれが耐 荷力に及ぼす影響が小さかったと考えられる。

なお、供試体 A については全供試体中最も健 全であったが、載荷実験の結果では供試体 H と 並んで最も低くなった。解体後の切断面におい ても耐力低下の原因となる要因は認められず、 耐力が小さくなった原因は不明である。

以上のことから,部分的な増厚コンクリート の剥離や水平ひびわれが即時に耐荷力そのもの に及ぼす影響は少ないが,ひび割れに水が浸透 した場合,滞水層と床版の面方向に交番して作 用するせん断応力により,増厚コンクリートの 剥離現象が拡大し,界面でのコンクリートの砂 利化を引き起こすことが推察される。また,供 試体Iのような全面剥離は床版を非合成化し,曲 げ剛性を著しく低下させる。このような剛性低 下は繰返し荷重によるひび割れ幅の変動を大き くし、ひび割れ界面のコンクリートを脆弱化さ せるため、疲労による剛性低下を加速させるも のと推察される。

5. まとめ

静的載荷試験の結果をまとめると以下のとお りである。

- (1) 静的耐荷力は,損傷状態および既設床版厚の 影響を受ける傾向が見られた。これは、増厚 コンクリートの剥離により,載荷荷重を主に 既設床版でのみ負担したためと考えられる。 ただし,損傷が大きい床版でも588~640 kN の範囲であり,設計荷重(100 kN)に対して は十分な耐力を有していることが確認でき た。
- (2)供試体Iが曲げ破壊を生じた理由は、界面の 全面剥離による床版の非合成化により曲げ 剛性が低下したため、押抜きせん断耐力の低 下に比べて曲げ耐力の低下が著しくなった と推察される。

今回行った実験は,今後行う予定の移動輪荷 重走行試験のための基礎実験である。今後,上 記の知見に疲労による影響を加味し,設計・施 工方法の見直しを行う予定である。

参考文献

- 設計要領 第二集(橋梁保全編), NEXCO 中央研究所, 2006.5
- 前田,松井:鉄筋コンクリート床版の押抜き せん断耐荷力の評価式,土木学会論文集, No.348/V-1, 1984.8