論文 2方向曲げを受ける合成長柱の耐力と破壊機構に関する実験

柴田 道生*1·林 和宏*2

要旨:合成長柱の2方向偏心圧縮実験を,3種類の載荷角度差,2種類の材長,2種類の偏心 量について計30体行った。試験体は1辺12cm角のコンクリート中に板厚6mmの鋼板を溶 接組立したH形断面鉄骨(H-62×50×6×6)を挿入し,主筋およびフープは9mm,3mm丸鋼 を用いた。部材の材長が長い場合,あるいは材端モーメントの値が小さい場合は $P-\delta$ 効果 が卓越し,部材中央で破壊に至る。それに対して材長が短い場合,あるいは材端モーメント の値が大きい場合は材端で破壊に至り,長柱としての検討は不要になる。 キーワード:合成長柱,2方向曲げ,偏心圧縮実験,最大耐力,破壊機構,設計式

1. はじめに

これまでの2軸曲げを受ける合成長柱の研究 の多くは、両材端のモーメントベクトルの向き が平行である場合(平行曲げ)を対象としてい た¹⁾⁻⁴⁾。しかし、実際の構造物では、両材端のモ ーメントベクトルの向きが異なる場合が考えら れる。このような荷重条件は「2方向曲げ」と 呼ばれる⁵⁾⁻⁷⁾。

本研究では、両材端で異なった方向に偏心を 与えた2方向偏心圧縮試験を行い、その破壊機 構と性状を明らかにするとともに、文献 7)で示 された設計式との比較を行う。

2.2方向偏心圧縮を受ける合成長柱の実験

2.1 試験体

試験体概要を図-1に,試験体名・載荷条件・ 支承形式・基本諸量および無次元化した最大耐 力を表-1に示す。試験体名は,1文字目は材長 を(A:120cm,B:240cm),2文字目は曲げの 種類を(1:2方向曲げ 載荷角度差45°,2:載 荷角度差90°,3:載荷角度差135°,4:載荷角度 差135°(弱軸曲げ基準)),3文字目は偏心量を (L:偏心大,s:偏心小,m:1cm),4文字目 は支承形式を表す(k:ナイフエッジ支承,c: かまぼこ支承)。同種の実験を複数回行った場合 は、5文字目に通し番号を持つ。また,NoとMxo. M_{yo} は試験体の降伏軸力と強軸曲げおよび弱軸 曲げの基準強度(中立軸が断面中心にある場合 の全塑性モーメント)である。基準端の偏心量 は降伏軸力と弱軸曲げ基準強度で無次元化した 偏心量が $N_{o}e/M_{yo} = \sqrt{3}$, $1/\sqrt{3}$ となるように 定めたもので,これは無次元化したN-M相関曲 線上では30°と60°の方向に対応する。

今回の偏心圧縮試験は,原則として基準端で 強軸曲げ方向の偏心を,相手端で角度差45°,90°, 135°の方向に偏心を与えたが,B4scとB4Lcの2 体については基準端で弱軸曲げ方向の偏心を, 相手端で角度差135°の方向に偏心を与えた。

鋼材の引張試験結果を表-2に、コンクリート の調合設計を表-3に示す。また、コンクリート の強度-対数材齢関係の数例を図-2に示す。な お、コンクリートの調合では細骨材の含水率に 応じて水及び細骨材量を補正した。

2.2 支承

2方向偏心圧縮の実験では、全方向回転自由な支 承が必要である。本研究では図-3に示す、交差か

*1 摂南大学 工学部建築学科教授 工博 (正会員)

*2 摂南大学大学院 工学研究科社会開発工学専攻 大学院生

まぼこ支承と交差ナイフエッジ支承を併用した。 ナイフエッジの詳細は文献 8)を参考とし,角棒 とそれを受ける部分には工具鋼 SKD11を使用し, 焼入れを施した。

2.3 載荷・測定システム

試験体の材端に所定の偏心量を与えるための 材端移動装置を図-3(a)に,試験体の立体的な変 形性状を測定することを目的とした測定システ ムのイメージを図-4に示す。実際には,材長を 8等分する点及び材端位置での*x*,*y*方向変位と, 軸方向変位を測定した。

2.4 材端回転拘束の測定

両材端に等しい偏心を与えた主軸周りの対称 偏心圧縮載荷を行い,荷重 - 中央点たわみ関係 を測定した。図-5は荷重に偏心量を乗じ,材端 モーメントの値として整理し直した材端モーメ ント - 中央点たわみ関係である。実験結果には バラツキが見られるものの,材端モーメントが およそ一定の値に達するまでたわみが発生して おらず,発生時の材端モーメントの値や発生後 の挙動が,偏心量に依存しないことが観測され た。かまぼこ支承,ナイフエッジ支承それぞれ を用いて,数体の試験体について同様の検討を 行った結果同じ現象が認められ,平均するとか まぼこ支承で約 400Nm,ナイフエッジ支承で約 800Nmの回転拘束が認められた。

3. 解 析

実験結果の検証および補間を目的として行っ た数値解析の概要を以下に示す。

試験体名	材長	φ	α	e_{max}	e_{xA}	e_{yA}	e_{xB}	e_{yB}	Fc	材齢	N_o	M_{yo}	M _{xo}	N/N _o	Ne/M _{yo}
	cm			cm					MPa		kN	kNm	kNm		
Alsc	120	45	0.864	0.90	0.55	0.55	0.00	0.90	25.4	89	797	13.03	16.64	1.013	0.558
A1Lc	120	45	0.864	2.70	1.65	1.65	0.00	2.70	24.2	89	795	12.99	16.53	0.622	1.028
A2sc-1	120	90	0.778	0.90	0.00	0.90	0.70	0.00	27.8	90	722	11.61	15.10	0.863	0.483
A2sc-2	120	90	0.778	0.90	0.00	0.90	0.70	0.00	27.3	98	724	11.77	15.11	0.995	0.550
A2sc-3	120	90	0.778	0.90	0.70	0.00	0.00	0.90	28.2	409	703	11.42	14.48	1.001	0.555
A2Lc-1	120	90	0.778	2.70	0.00	2.70	2.10	0.00	28.7	86	740	11.97	15.38	0.569	0.949
A2Lc-2	120	90	0.778	2.70	2.10	0.00	0.00	2.70	34.1	442	813	13.04	16.56	0.629	1.059
A2Lc-3	120	90	0.778	2.70	2.10	0.00	0.00	2.70	30.6	135	748	12.11	15.31	0.577	0.961
A2sk-1	120	90	0.778	0.90	0.00	0.90	0.70	0.00	27.3	99	704	11.38	14.72	0.883	0.492
A2sk-2	120	90	0.778	0.90	0.00	0.90	0.70	0.00	30.1	115	740	11.92	15.33	0.845	0.472
A2Lk-1	120	90	0.778	2.70	0.00	2.70	2.10	0.00	27.3	98	708	11.44	14.86	0.593	0.991
A2Lk-2	120	90	0.778	2.70	0.00	2.70	2.10	0.00	31.5	134	752	12.10	15.40	0.549	0.922
A3sc	120	135	0.846	0.90	0.00	0.90	0.55	-0.55	29.8	207	744	11.96	15.36	0.952	0.533
B1sc	240	45	0.864	0.90	0.55	0.55	0.00	0.90	26.7	90	694	11.43	15.03	0.504	0.275
B1Lc	240	45	0.864	2.70	1.65	1.65	0.00	2.70	26.5	90	712	11.67	15.30	0.383	0.631
B2sc-1	240	90	0.778	0.90	0.70	0.00	0.00	0.90	27.6	137	710	11.40	14.83	0.688	0.385
B2sc-2	240	90	0.778	0.90	0.70	0.00	0.00	0.90	27.1	135	713	11.45	15.01	0.775	0.434
B2Lc-1	240	90	0.778	2.70	2.10	0.00	0.00	2.70	30.3	137	756	12.16	15.60	0.429	-0.720
B2Lc-2	240	90	0.778	2.70	2.10	0.00	0.00	2.70	28.3	137	729	11.66	15.23	0.413	-0.697
B2Lc-3	240	90	0.778	2.70	2.10	0.00	0.00	2.70	33.2	147	772	12.46	15.67	0.398	0.666
B2sk	240	90	0.778	0.90	0.00	0.90	0.70	0.00	31.5	148	749	12.04	15.36	0.591	0.331
B2Lk	240	90	0.778	2.70	0.00	2.70	2.10	0.00	33.7	148	787	12.69	15.89	0.406	0.680
B3sc-1	240	135	0.864	0.90	0.00	0.90	-0.55	0.55	30.1	206	754	12.09	15.63	0.693	0.389
B3sc-2	240	135	0.864	0.90	0.55	-0.55	0.00	0.90	32.1	438	755	12.18	15.38	0.792	0.442
B3sc-3	240	135	0.864	0.90	0.55	-0.55	0.00	0.90	30.6	436	737	11.86	15.14	0.656	0.367
B3sc-4	240	135	0.864	0.90	0.00	0.90	0.55	-0.55	32.0	94	717	11.74	15.30	0.645	0.354
B3Lc-1	240	135	0.864	2.70	1.65	-1.65	0.00	2.70	29.9	435	731	11.79	15.06	0.487	0.815
B3Lc-2	240	135	0.864	2.70	1.65	-1.65	0.00	2.70	31.6	94	715	11.69	15.29	0.532	0.879
B4sc	240	135	1.111	0.70	0.70	0.00	-0.55	0.55	30.0	206	742	11.92	15.29	0.739	0.322
B4Lc	240	135	1.111	2.10	2.10	0.00	-1.65	1.65	29.2	434	728	11.74	15.13	0.456	0.594

表-1 試験体一覧

α: 材端モーメントの大きさの比

表-2 鋼材の引張試験結果									
		04 4	年度	05 4	年度	06 年度			
		鉄骨	主筋	鉄骨	主筋	鉄骨	主筋		
降伏応力	MPa	307	324	282	320	313	368		
引張強度	MPa	448	452	420	447	432	504		
伸び率	%	27.96	24.31	26.75	30.03	28.55	28.40		

表-3 コンクリートの調合									
水セメント比 W/C(%)	水 W(kg)	セメント C(kg)	砂 S(kg)	粗骨材 G(kg)	AE 剤 Ad(kg)				
65	210	323	867	830	3.46				

(a) 交差かまぼこ支承と材端移動装置(b) 交差ナイフエッジ支承図-3 支承(単位:mm)

3.1 解析モデル

部材の両端に異なる方向と大きさの偏心 e_A , e_B = αe_A ($\alpha < 1$) を与えた偏心圧縮柱を図-6のよ うにモデル化し、各点の曲率をたわみの2次差分 で近似する。両材端は長さ S_A , S_B の剛域を持ち、 支点には回転拘束 $M^{\#}$ が存在する。剛域の大きさは、 ナイフエッジ支承では材端からエッジ先端までの 距離、かまぼこ支承では $S_A = S_B = 0$ となる。

3.2 仮定

- 1) 平面保持仮定が成立する。
- 2) 垂直応力および軸力の符号は圧縮を正,軸ひず みは縮みを正とする。
- 材料の構成法則は図-7のパラボラ型とし、 比例限度rはコンクリートではr=0、鋼材で はr=0.6とする。
- コンクリートには引張強度 およびコンファインド効果を 期待しない。

- 5) 塑性域でのひずみ反転に r12-r 伴う弾性除荷を考慮しない。 図-7 材料構成法則
- 6) 支点では、一定の回転拘束が発生する。

4. 実験結果と考察

4.1曲げモーメント分布の推移

基準端 A で y 方向に e_A の偏心を,相手側端 B で x 方向に e_B の偏心を与えた図-8(a)の 2 方向 偏心圧縮長柱を,外力の作用線上からみた姿を 同図(b)に示す。外力が作用しない段階での材軸 線は点 A, B を結ぶ直線 C_0 となるが,外力の増 加とともにたわみが発生し,曲線群 C_1 , C_2 , C_3 の経緯をたどる。図中の \circ 印のプロット群 D は 曲げモーメント指標(存在軸力 N および曲げの 軸の傾き ϕ に対応した全塑性モーメント $M_p(N, \phi)$ に対する各点での曲げモーメントの大きさ M(z)の比)が最大となる点の軌跡を示す。この 例では,外力が小さい段階では曲げモーメント 指標最大位置は材端にあるが,途中で部材中央 付近に飛越し,部材中央付近で塑性ヒンジを形 成して破壊に至る。同図(c)は変形後の材軸線と荷 重線の距離に外力の値を乗じた曲げモーメント 分布の推移と、曲げモーメント指標最大位置の軌 跡を示す。最大耐力時の分布を曲線C2で表せば、 この例では最大耐力以降は部材中央部分の曲げ モーメントは増大するが、部材端では減少する。

図-9は試験体 B2Lc-3 について,実験と解析 で得られた曲げモーメント分布の推移を示す。 曲げモーメントの算定に当たっては 2.4 節で得 た材端拘束の影響を考慮した。図の縦軸と横軸 は弱軸周りと強軸周りそれぞれの,曲げモーメ ントの値と弱軸曲げ基準強度の比であり, →→ は最大耐力まで, →→ は最大耐力時,---◇-- は 最大耐力以降の分布を示す。

また, ---・ は得られた曲げモーメント指標 最大位置の軌跡を示す。この曲げモーメント分 布は, 載荷初期段階は直線であるが荷重が増え るにつれてたわみが発生し, 中央付近で値が大 きくなる。試験体 B2Lc-3 では, 最大耐力時まで に曲げモーメント指標最大位置が部材中央付近 に飛越する結果となった。

図-10 は、代表的な試験体の最大耐力時の曲 げモーメント分布と、それぞれの曲げモーメン ト指標最大位置の軌跡について、実験値と解析 の比較を示す。図の縦軸と横軸はそれぞれ、弱 軸周りと強軸周りの曲げモーメントと弱軸曲げ 基準強度の比である。実線が曲げモーメント分 布、破線が曲げモーメント指標最大位置の軌跡、

● が実験値, ○ が数値解析結果を示す。

図は代表的な試験体に関する一例であるが同 種の検討を全試験体について行った結果, P-δ 効果が顕著に表れる L/D=20の試験体では実験結 果と解析の対応が良好なのに対し,L/D=10の試 験体では最大耐力後の挙動に差が見られた。

さらに, 偏心量に着目すると, 偏心が大きい場 合の対応は良好である。しかし, 偏心が小さい場 合は実験結果が弱軸曲げ変形の卓越を示すのに 対し, 解析結果ではその傾向が見られなかった。

4.2曲げモーメント指標分布

図-11 は試験体 B2Lc-3 について,実験と解析 で得られた各荷重段階における材軸方向の曲げ モーメント指標分布と,曲げモーメント指標最 大位置の軌跡を示す。縦軸は曲げモーメント指 標の大きさ,横軸には材軸方向位置と材長の比 をとる。部材各点での曲げモーメント指標は, 最大耐力時までを→→,最大耐力時を→→, 最大耐力時以降を---◇--で示す。

曲げモーメント指標を算定する基となる全塑 性モーメントは、存在曲げモーメントベクトル の向きに依存するため、曲げモーメント分布と 曲げモーメント指標分布は相似形にならない。 また、曲げモーメント指標最大位置の軌跡を ----で示す。

今回の実験のような条件では、荷重初期段階 では曲げモーメント指標分布が凹となり、最大 曲げモーメント指標位置が材端となる。偏心が 小さい場合や材長が大きい場合は $P-\delta$ 効果が 卓越するため、最大曲げモーメント指標位置が 中間に飛越し、部材中央付近に塑性ヒンジが発 生して破壊に至る。それに対して偏心が大きい、 あるいは材長が短い場合は $P-\delta$ 効果が顕著に

表れず,最大耐力にいたるまで曲げモーメント 指標分布が凹の形を保ち,最大耐力時まで曲げ モーメント指標最大位置が材端に留まる。

図-12 は、代表的な試験体の最大耐力時の部 材各点での曲げモーメント指標と、曲げモーメ ント指標最大位置の軌跡について、実験値と解 析の比較を示す。縦軸は曲げモーメント指標の 大きさをとる。実線が曲げモーメント指標、破 線が曲げモーメント指標最大位置の軌跡,●が実 験値, ○が解析を示す。実験値と解析の対応は、 材長が240cmの試験体では非常に良好である。

また,A2sc-1 以外の試験体では,最大曲げモ ーメント指標が1 に達しておらず,不安定破壊 を呈する⁹⁾。それに対しA2sc-1 では,実験にお ける最大曲げモーメント指標が1を超えている。

5. 実験結果と予測式の比較

図-13 は今回の実験結果と文献 7)で示された 設計式の比較を示す。また図には、同種の試験 方法で行われた主軸曲げと平行 2 軸曲げの結果

も合わせて示す。図中の細実線は一般化累加強度 式,破線は文献7)で示された設計式,1点鎖線は 数値解である。また,●は材長が120cmの試験体 の実験値を,○は材長が240cmの試験体の実験値 を示す。提案式と実験値の対応は曲げの種類に関 係なく,いくつかの例外を除いて良好である。

6. 結論

合成長柱の2方向偏心圧縮実験とそれに対応 する数値解析を行うとともに,文献 7)で示され た設計式の比較を行い,以下の結論が得られた。

- 2 方向曲げにおいて、*P*-δ 効果が卓越せず 材端で破壊に至った場合,耐力は全塑性理論 で予測できる。
- P-δ効果が卓越した場合は、ほぼ部材中央 で破壊に至り、長柱は部材中央で破壊すると 仮定した文献 7)の設計式が適用できる。
- 3) 実験結果と数値解析の対応はほぼ良好である。
- 4) 実験結果と文献 7)で示された設計式の対応は 良好であり、ほぼ安全側の結果となった。

謝辞 本研究は 2004~6 年度日本学術振興会 科学研究費 基盤研究(c)「2方向曲げを受ける 合成長柱の耐力評価に関する研究」(研究代表 者:柴田道生)の一部として行われた。

参考文献

- Virdi, K.S. and Dowling, P.J. : The Ultimate Strength of Composite Columns in Biaxial Bending, Proceedings Inst. Civil Engrs., Vol.55, Part2, pp.251-272, 1973.03
- 2) 森野捷輔:構造部材および骨組の弾塑性不安定現象に関 する研究,京都大学学位論文, 1984.07
- Johnson, R.P. and May, I.M. : Tests on Restrained Composite Columns, The Structural Engineer, Vol.56B, No.2, pp.21-28, 1978.06
- 4) 柴田道生:2軸偏心圧縮を受ける SRC 長柱の耐力および弾塑性性状に関する実験、コンクリート工学年次論文報告集、Vol.22, No.3、pp.1057-1062, 2000.06
- 5) 柴田道生,徳田好克:2方向曲げを受ける合成長柱の弾 塑性挙動に関する実験,コンクリート工学年次論文報告 集, Vol.24, pp.1321-1326, 2002.06
- 6) 柴田道生:2方向曲げを受ける合成長柱の近似解析法と 長柱効果発生条件,日本建築学会構造系論文集,No.571, pp.187-192,2003.09
- 柴田道生:2方向曲げを受ける合成長柱の耐力予測,日本 建築学会構造系論文集, No.613, 2007.03.
- May, I.M.: Crossed Knife-edge Joints for Testing Columns, Proceedings Inst. Civil Engrs., Part2, pp.917-919, 1978.12
- MacGregor, J.G., Breen, J.E. and Pfrang, E.O. : Design of Slender Concrete Columns, ACI Journal, pp.6-28, 1970.01