論文 自己修復コンクリートの開発を目的とした機能要素の開発に関する研究

西脇 智哉*1·三橋 博三*2·郡司 幸弘*3·奥原 芳樹*4

要旨:筆者らがこれまで提案してきた自己修復コンクリートについて,確実な自己修復機能の発現を目的とした検討を行った。発熱デバイスと補修剤保護パイプの間を連結材で接続し, これらを一体としたユニットの提案,試作を行った。これに対して熱伝導解析と実験を行い, その有効性を確認した。

キーワード:自己修復機能,自己診断材料,ひび割れ,熱伝導,連結材

1. はじめに

著者らはこれまで、コンクリート構造物の長 寿命化を目的として、発熱デバイスを利用した 自己修復コンクリートを提案し、その開発に取 り組んできた。コンクリートのひび割れ発生箇 所を選択的に加熱することのできる発熱デバイ ス(自己診断材料)と、補修剤を内包する熱可 塑性の材料で構成されたパイプをコンクリート 中に併せて埋設し,自己修復機能を発現させる ものである。図―1に示す概念図のように、母 材のコンクリートにひび割れが発生した場合, その周囲で発熱デバイスの電気抵抗が上昇する。 この抵抗上昇は保持されるため、必要に応じて 発熱デバイスに電圧を印加すれば、このひび割 れ部分の選択的な加熱が可能となり,並行して 埋設されたパイプを融解させて,補修剤がひび 割れ中に放出される。これらの一連の動作によ り、人間の手による直接の補修作業を必要とし ない、自己補修が可能になるものと考えられる。

これまでの検討により,ひび割れ周囲での抵 抗上昇と,それに伴う選択的な発熱¹⁾,プリプレ グ節を利用してのひび割れ幅と発熱増加量の関 係の把握²⁾,熱伝導解析による各要素に必要な熱 特性や,コンクリート内部での配置計画³⁾等,自 己修復機能付与のためのコンセプトは有効なも のと確認された。

ここでは、より現実性の高い自己修復システ ムとするために、自己診断材料から補修剤保護 パイプへの効率的な熱伝導について検討を行う。 効果的な自己修復機能の発現のためには、自己 診断材料で生じる熱を「選択的」かつ「速やか」 にパイプに伝える必要がある。この一方で、コ ンクリートは必ずしも熱伝導に有利な材料では ない。これまでの熱伝導解析を用いた検討³⁾では、 自己診断材料の加熱によってパイプを速やかに 融解させるためには、自己診断材料をコンクリ ートに悪影響を及ぼすような,極端に大きな発 熱量を与えてやるか、自己診断材料とパイプの それぞれを,数 mm 程度の近傍に配置する必要 があると確認された。しかし、 互いの距離が極 端に近い場合は施工精度が問題となるとともに, ひび割れ発生部分に対する選択的な加熱が困難 となる。そのため、ここでは熱伝導率のより高

*1 山形大学 地域教育文化学部生活総合学科講師 博士(工学) (正会員)
*2 東北大学大学院 工学研究科都市・建築学専攻教授 工博 (正会員)
*3 東北大学大学院 工学研究科都市・建築学専攻博士前期課程 (会員外)
*4 ファインセラミックスセンター 材料技術研究所 工博 (会員外)

い材料を,自己診断材料と補修剤保護パイプと を繋ぐ連結材として用いることを提案する。こ の連結材に要求される熱特性を熱伝導解析によ って検討し,そこで得られた結果を基に実験を 行い,その有効性を確認することを本論文の目 的とする。

2. 連結材

自己診断材料と補修剤保護パイプを繋ぐ連結 材の概念図を図-2に示す。この連結材を通し て,自己診断材料から得られる発熱を,効率よ く補修剤保護パイプへと伝達する。そのためこ の連結材の熱伝導率は,コンクリートよりも大 きい値とする必要がある。熱伝導率の高い材料 としては銅などの金属が挙げられるが,ここで は自己診断材料に対する通電による加熱を利用 しているため,接触面で絶縁を確保することが 必要である。この一方で,効率良く熱を伝える ためには,確実に密着させる必要がある。この ため,金属の連結材を用いる場合には,絶縁体 であり,柔軟かつ熱伝導率の大きい接着剤を用

補修剤保護パイプ

連結材

自己診断材料から

の発熱を伝達

いて,自己診断材料やパイプと接続する必要が ある。もしくは,連結材そのものに,絶縁体で あり,柔らかく追随製の高い材料を用いること も考えられる。このような条件を満たす接着剤 や熱伝導材料としては,一般的には CPU とヒー トシンクを繋ぐ用途などに使用される,熱伝導 性のエポキシ接着剤やシリコンゴムなどが挙げ られる。金属と比較すれば,熱伝導率が小さく なることは避けられないが,連結材として使用 した場合,コンクリートよりも十分に大きい熱 伝導率を得られるものと期待される。

3. 解析による検討

ここでは、実験に先立って熱伝導解析を行い、 上記の2種類の連結材と、各要素の配置計画に ついての検討を行う。

3.1 解析概要

解析には非線形有限要素解析プログラム (MSC. Marc)を用いた。解析モデルは,実験によ る確認を行うことを前提として,長さ 300mm, 幅 40mm,厚さ 10mm (対称条件より厚さ 5mm についてのみモデル化)の薄片状として解析を 行った。このモデルおよびモデル内部での各要 素の配置状態を図-3に,使用した物性値を表 -1に示す。解析に使用した発熱条件および境 界条件を表-2と表-3に示す。発熱量は,発 熱条件として想定する電圧および抵抗値から計

プリプレグ節

算される全体の発熱量を、発熱デバイス要素の 体積で除して、単位体積当たりの値として求め ている。また、ひび割れにより抵抗が上昇した 場合は、ひび割れによる抵抗上昇がない部分で の発熱量を一定とできるように、印加する電流 量を一定とし、ひび割れが含まれる節間の自己 診断材料要素に対しては、この条件から生じる 増大した発熱量を与えている。ここで用いた発 熱条件は、断面積 3mm²、長さ 200mm、抵抗 350 Ωの自己診断材料を想定した場合に,100Vの電 源から容易に供給可能な範囲として設定してお り、この自己診断材料に70Vの電圧(0.2Aの電流) を印加した場合に相当する。また、ひび割れあ りと想定した発熱条件では、ひび割れ発生箇所 で 48mm に渡って 150Ω増大したものに対して 90V の電圧(電流はひび割れ前と同様に 0.2A)を 印加したものと考えることが出来る。初期条件 として,室温である20℃を全要素に対して与え, 1分ごとの温度分布の変化について、通電開始か ら30分間に亘って解析を行った。

本解析で検討するパラメータとして,連結材 の材質と,自己診断材料と補修剤保護パイプの 間隔を取り上げる。前者については,連結材と して銅板と熱伝導シリコンゴムのそれぞれを用 いる場合について検討を行う。後者については, それぞれの間隔を 10mm と 20mm の2つとして 検討を行う。

3.2 自己修復の判定条件

ここで提案している自己修復が発現するため には,自己診断材料からの発熱によって,補修 剤保護パイプ位置での温度が,(1)選択的かつ(2)

要素		熱伝導率 [W/mK]	比熱 [J/kgK]	密度 [kg/m ³]
モルタル		1.1	900	2.04
自己診断材料		1.2	750	2.0
プリプレグ節		0.419	795	1.7
補修剤保護パイプ		0.19	1670	1.6
連結材	銅板	398	380	8.96
	シリコン	5.0	850	2.6
熱伝導接着剤		1.6	1670	2.6
リード線		398	380	8.96

速やかに(3)保護パイプの融点以上に到達し,更 にこの状態を瞬間的に得るのではなく,(4)ある 程度持続させることが必要となる。また,自己 診断材料の(5)最高温度がコンクリートに有害と なる温度に到達しないことも条件の一つとして 挙げられる。ここではこれらの条件を整理して, (1)節間距離の120%以内の範囲が,(2)10分以内 に(3)82℃(EVAフィルム融点)以上に到達し, (4)この状態が10分間維持される。なおかつ(5) 最高温度が200℃に達しない場合に自己修復は 可能であったと判定するものとした。

3.3 解析結果

解析によって得られた,供試体モデル表面の 温度分布について,連結材に銅板を用いた場合 のものを図-4に、シリコンゴムとした場合の ものを図-5に示す。図-4(a)はひび割れの発 生していない場合の,通電開始から10分後の温 度分布である。このとき,自己診断材料自体の 温度は約 98℃に留まり、補修剤保護パイプの位 置でも最高温度は 62℃と、より熱伝導率の大き い銅板を連結材に使用した場合であってもこの 表面に用いる EVA フィルムの融点(82℃)を超 えないことが確認できる。図-4(b)および(c) は、ひび割れの発生により自己診断材料の抵抗 値が 43%上昇(節間では 200%の上昇)した場 合の,通電開始から10分後のモデル表面での温 度分布である。パイプと自己診断材料の距離を 10mm とした図-4 (b) では、約 20mm に亘って パイプ位置での温度が82℃を超えている。この 一方で、図-4(c)からは、パイプ位置での温度 は最高でも約70℃に留まり、フィルムの融点に

表—2 発熱条件

	発熱量 [W/mm ³]				
	一般	ひび割れ位置			
ひび割れなし	0.0233				
ひび割れあり	0.0233	0.0402			

表—3 熱伝達率

上面	下面	側面
2.0×10 ⁻⁵	1.2×10⁻⁵	1.8×10⁻⁵
[W/mm²K]	[W/mm ² K]	[W/mm²K]

図-5 解析から得られた温度分布(シリコン 10mm・ひび割れあり・10 分間)

届かない。これらのことから、同じ発熱条件で あれば、連結材を短くする方が望ましいことが 分かる。また、このときのひび割れ箇所におけ る自己診断材料自体の温度は、銅板を 10mm と した場合で約 125℃であり、先の条件とした閾値 の 200℃を上回ることはなかった。

この連結材を 10mm とした条件を用いて, 更 に 10 分間の加熱を継続させた, 開始から 20 分 後の温度分布を図—4(d)に示す。この場合であ っても最高温度は約 138℃と閾値以下を保持す ることが可能であり, なおかつパイプ位置で 82℃以上に達しているのは約 46mm の区間であ った。すなわち, 自己修復に必要な条件を 10 分 間保持することが可能であると判断される。以 上のことから, ここで用いた発熱条件では, 10mm の距離を, 銅板を用いた連結材で接続した 場合に, 自己修復機能を発現させることが可能 になるものと考えられる。 この一方で図—5からは,発熱量が増大した際の加熱によって,自己診断材料自体の温度は 銅板を連結材に使用した場合よりも高温に達す るが,パイプ位置での温度は約79℃と融点に到 達していないことが分かる。すなわち,連結材 にシリコンゴムを用いても,必要な熱伝導を得 られないことが確認される。

4. 実験による検討

ここでは,解析の結果から自己修復が可能と 期待される,銅板を連結材とした供試体を作製 し,通電による加熱と3点曲げ載荷試験を行う。 載荷試験によりひび割れを受けた場合に,抵抗 上昇による選択的な発熱を生じて,ひび割れに 対して補修剤の自動的な供給が可能であること を確認する。

4.1 実験概要

供試体の形状と載荷方法を図—6に示す。解

析モデルに倣って幅 40mm,長さ 300mm,厚さ 10mmの直方体とし、中央に深さ 5mmの切欠き を設けてひび割れの発生箇所を限定した。供試 体に使用した調合を**表--4**に示す。

載荷に先立って, ひび割れが発生していない 状態で通電を行い, サーモグラフィ観察により 供試体表面の温度分布を得た。続いて載荷試験 によって切欠き位置にひび割れを発生させる。 載荷には変位制御型の万能試験機を用いた。自 己診断材料は供試体の引張縁に埋設されており, 切り欠き位置でのひび割れ幅と自己診断材料の 抵抗値を計測しながら,所定の抵抗上昇率が得 られるまで載荷を行った。その後,ひび割れが 発生した状態で再度通電を行い,ひび割れ箇所 を選択的に加熱可能であることを確認した。

4.2 健全な自己診断材料への通電加熱

供試体にひび割れが発生していない状態での 通電は,解析条件に沿って347Ωの抵抗を持つ自 己診断材料に対して74.5Vの交流電流を10分間 印加した。このときの,自己診断材料に生じる 発熱は約16W相当であり,解析条件と概ね一致 する。通電開始から10分後の供試体表面の温度 分布を図-8(a)に示す。ひび割れの発生しない 状態では,自己診断材料は概ね一様に発熱して いることが確認できる。また,図-4(a)の解析 結果と比較しても,最高温度や温度の分布範囲 などは概ね一致していると考えられることから, この段階の通電によっては,補修剤保護パイプ の融解はないものと判断できる。

4.3 ひび割れ後の自己診断材料への通電加熱

前述の解析結果を踏まえて、3点曲げ載荷試 験によって、解析条件と同程度の抵抗増加を与 えた上で再度通電を行う。この通電に伴う加熱 によって、補修剤保護パイプを選択的に融解さ せることが可能であることを確認する。ひび割 れ幅と抵抗値を計測しながら載荷を行ったとこ ろ、約0.18mmのひび割れ幅に達した時点で抵抗 値が518Ωまで増大した。

健全部とひび割れ部それぞれの発熱量が表--2に示した解析に用いた発熱条件と同様となる ように、この供試体に対して104Vの交流電圧を 印加した。通電開始から10分経過後の温度分布 を図-8(b)に示す。図には発生したひび割れと, 自己診断材料および補修剤保護パイプの位置を 併せて示す。この図からも分かるように、ひび 割れを含む節間に生じた発熱の集中は、連結材 を通して補修剤保護パイプへと伝達されている。 このときの分布形状は、図―4で得られた解析 結果に近い形となっており、選択的な加熱を効 率よく行うことが可能であることが確認できる。 通電開始から約8分後には、図-9のように、 ひび割れからの補修剤の流出が確認された。す なわち補修剤保護パイプの融解と、それに伴う 内包補修剤の放出が確認できた。

図-9 補修剤の流出

この状態から更に10分間の通電を続けた,通 電開始から20分後の供試体表面の温度分布を図 -8(c)に示す。この条件を想定した解析結果で ある図-4(c)と比較しても温度分布の形状,最 高温度ともに比較的近いものとなっている。す なわち,3章で想定した自己修復機能発現のた めの条件を,実験においても解析と同様に満た すことが可能であったと考えられる。

5. まとめ

本研究では,提案する自己修復機能を,より 現実性の高いものとするために,自己診断材料 と補修材保護パイプを結ぶ連結材を用いること を提案した。熱伝導解析と基礎的な実験の結果, 連結材として銅板を用いることにより,効率的 な熱伝導が可能になることを確認した。

今後の検討課題としては,補修効果の定量評 価や耐久性試験,自己診断材料への電流の供給 方法,パイプのネットワーク化による補修の繰 り返し実行の可能性等,実用化に向けての更な る検討を行う必要がある。

謝辞

本研究は,平成17年度科学研究費補助金(萌芽研究, 課題番号:17656172)の一部として実施された。ここ に記して謝意を表する。

参考文献

- 西脇智哉ほか: コンクリートに対する遮水性 能の自己修復機能付与に関する基礎的研究, コンクリート工学年次論文報告集, Vol.27, No.1, pp.1579-1584, 2005.6
- 2) 西脇智哉、三浦和晃、三橋博三、奥原芳樹:自 己修復コンクリートの開発を目的とした発熱デ バイスに関する検討、コンクリート工学年次論 文報告集、Vol.28、No.1、pp.2111-2116、2006.7
- 西脇智哉、三橋博三、三浦和晃、張炳國:コ ンクリートに対する自己修復機能付与のた めの解析的検討、セメント・コンクリート論 文集、No.59/2005、pp.469-476、2006.2