論文 パッシブソーラーの吸熱効果を利用したサーモグラフィー法に よるコンクリートの損傷診断予測

江藤 亮*¹・柳内 睦人*²・金光 寿一*³

要旨:サーモグラフィー法を用いてコンクリート構造物を診断する場合には,太陽光を 利用したパッシブ法が有効である。しかし,対象物の方位や角度によって吸熱量が異な リ,深く進行したひび割れなどは評価できない可能性がある。そこで,本研究ではソー ラーハウスと同様の効果を期待してエアーキャップと黒色アルミ箔を組み合わせて吸熱 効果を検討した。その結果,標準試験体との比較実験では上昇温度で20 以上の有意 差が得られた。また,熱伝導解析ではコンクリートの方位が既知であれば日射積分量か らコンクリートの最大上昇温度,またその時刻が予測可能であることを明らかにした。 キーワード:サーモグラフィー法,パッシブソーラー,ひび割れ検出,熱伝導解析

1. はじめに

太陽光を利用したパッシブサーモグラフィー 法では,検出可能となる熱負荷条件が問題とな り,表面近傍部の変状は検出可能であっても, 深く進行したひび割れなどの損傷部については 評価できない可能性がある。このような問題を 解決するためには,コンクリート面への吸熱量 を増大し,熱損失をできる限り低減する必要が ある。既に筆者らは熱吸収率及び熱伝導性の高 い黒色アルミシートをコンクリート表面に密着 させ,さらに軽量で取り扱いの簡単なエアーキ ャップで覆うことによりソーラーハウスと同様 の熱量が供給されることを確認している¹⁾。と ころが、このコンクリートへの蓄積熱量では、 エアーキャップと単純にコンクリートを覆った ビニールシートとの比較実験から対流熱損失の 抑制には空気層の高さ(厚み)が影響することが 明らかとなった。従って, 収熱性能は, 隔壁空 気層の状態を変えることによって, さらに向上 が期待された。

そこで,本研究では各種隔壁(粒径・粒高)の 異なるエアーキャップを用いてコンクリートへ の吸熱効果を検討するものである。一方,この パッシブソーラー法を有効に利用する場合には, 季節によって太陽エネルギーが変化すること, また対象物となるコンクリート面の方位角及び 角度(傾斜)が吸熱量に影響してくることから, 両者の関係を明らかにしておくことが診断予測 を行う上で重要となる。パッシブソーラー法が 利用できるコンクリートの方位については,非 定常熱伝導解析から入力日射量とひび割れ部に 生じる温度差から予測した。

2. 実験概要

種々粒径・粒高及び層数の異なるエアーキャ ップを用いた太陽光の吸熱効果は,屋外での基 礎実験及び RC 梁での実験を行い,コンクリート の上昇温度から明らかにした。

2.1 屋外による基礎実験

実験は,平成18年8月4日7:00より17:00ま で5試験体同時に行った。試験体は,幅150×高 さ150×長さ530mmで,黒色塗料で塗ったアルミ シートをコンクリート表面に密着させ,さらに粒 径・粒高及び層数の異なる各種エアーキャップで

*1 日本大学 生産工学部土木工学科大学院 (正会員) *2 日本大学 生産工学部土木工学科教授 博(工) (正会員) *3 中央工学校 土木測量学部講師 博(工) (正会員) 密封したもの,またN試験体は材料を用いない比 較のための標準試験体である(表-1 参照)。エア ーキャップはポリエチレン製で無数の気泡をシ ート状にした緩衝材であるが,3層はキャップ両 面がともにシートで覆われているものである。実 験時の天候は快晴で,全天日射計(波長範囲:305 ~2,800nm,感度:5mV/kW・m⁻²)で測定した最大全 天日射量は880W/m²であった(図-1参照)。試験体 への直達日射は,実験場所が建物間であるため 8:30~15:20である。日射及び外気温によるコン クリート温度は,熱電対(T社製,芯線構成:0.64mm ×2本)をコンクリート表面(黒色アルミシート とコンクリート間)に貼付けて測定した。なお, 試験体の側面には厚さ 50mmの発泡スチロールを 貼付けている。実験状況を図-2に示す。

その結果を図-3 に示す。集熱効果では 2L32 試 験体が最も吸熱及び温室効果が得られている。上 面温度が最も高くなった時刻は,13:15 で 67 ま で上昇している。N試験体との上昇温度差では, 13:30 に 22.4 もの有意差が得られた。ここに, 同時並行で行った各種エアーキャップの全天日 射量に対する透過率(11:00~12:00の平均値)を 表-2 に示しておく。この透過率は全天日射量を 基準に,日射計の上部 10mm に各種エアーキャッ プで日射を遮って得られた日射量との割合であ る。なお,厚さ6mmのガラスも比較のために行っ た。その全天日射量の透過率では, 2L20, 2L32, ガラス,2L10,3L10の順に透過率が低下してい る。一方,上昇温度では2L32,3L10,2L20,2L10, N 試験体の順に大きくなっている。2 層同士であ る粒径・粒高が異なる 2L10, 2L20 及び 2L32 を比 較すると, 2L10 は日射透過率も低く上昇温度も 最も小さい。2L20 と 2L32 の比較では, 2L20 の方 が日射透過率は良いものの上昇温度は 2L32 の方 が高い。その熱損失の抑制効果では,2L20の粒 径 20mm, 粒高 8mm よりも粒高の大きい 2L32 の方 が小さいものと思われるが

収熱効果は逆に 2L32 が高く,今後,日射量と粒高の関係を明らかにす る必要がある。一方,3L10 は透過率が低い割に は2番目の上昇温度となっている。 空気層の状態

表-1 試験体一覧

試験休詞早	エアーキャップの種類			
	層	粒径(mm)	粒高(mm)	
2L10		10	4	
2L20	2	20	8	
2L32		32	13	
3L10	3	10	4	
N	標準詞	-		

表-2 日射透過率の相違

エアー	口하計				
2L10	2L20	2L32	3L10	ガラス	
0.84	1.04	0.96	0.73	0.92	1

はビニールシートと同様であるが,3層のラミネ ート加工での断熱効果によって熱損失がより抑 えられたものと考える。

2.2 屋外による RC 梁の実験

RC 梁の実験は,静荷重載荷実験後に基礎実験 と同様に RC 梁上面に黒色アルミシートを密着 させ基礎実験で最も吸熱効果の得られた 2L32 のエアーキャップで密封したものである。上面 は絶えず日射を受け,底面は絶えず日陰となる 構造物を想定したもので,上面から熱伝達され て得られた底面の表面温度変化と発生したひび 割れ進展状況との関係から日射を受けることの ない側からのひび割れ評価について検討した。 (1)静荷重載荷実験及び測定方法

試験体は,長さ2,800mm,幅300mm,高さ210mm で主鉄筋にはD16を3本,圧縮側に2本配置し, ひび割れ評価は降伏荷重にて中断したひび割れ 発生から行った。赤外線カメラによる底面の温度 測定〔2次元非冷却マイクロボロメータ型,波長 領域8.0~14.0µm,感度0.15 (at30)〕は,高 さ2.3mのL型鋼で試験体を支え,測定距離1.65m の真下の位置から平成18年9月19日の7:00~ 17:00までの10時間を20分間隔で時系列の熱画 像を得ることにした(写真-1参照)。

(2)熱画像からのひび割れ評価

測定日の天候は晴れ時々曇りで,最大全天日射 量は 11:00 に 600W/m², RC梁への直達日射時間は 7:50~14:40 であり,最大風速は 4.3m/sであっ た。熱電対で測定したコンクリートの上面温度と 赤外線カメラで撮影した底面温度の時系列変化 を図-4 に示す。

その結果,コンクリートの上面温度は,13:10 に55.5 となっており,外気温より約25 ほど 大きい。一方,底面温度の最大値は,15:20 に 32.2 となり測定開始時よりも約9 ほど上昇し ている。図-5 は降伏荷重時に得られた側面のひ び割れ進展状況(ひび割れ幅は除荷後に測定)と 15:20 の熱画像である。底面の長手方向の中心位 置に沿った温度分布変化は,特にひび割れ番号の 6と7間が形成するアーチ状のひび割れ及び底面

付近で枝分かれしたひび割れから熱移動が遮断 されて健全部と比較すると放物線状に0.3 程度 の低温域が確認される。このように,コンクリー ト厚さが200mm程度であれば,完全な日陰部であ っても透過熱を利用すればコンクリート内部の ひび割れ進展状況を推測することが可能である。

3.数値シミュレーション

二次元非定常熱伝導解析では,吸熱材料を用 いない通常のコンクリートとの比較からパッシ ブソーラー法の有効性及び利用できるコンクリ ートの方位について,入力日射量とひび割れ部 に生じる温度差から予測した。

3.1 解析モデル

図-6 には想定したひび割れパターンを示す。 コンクリートの厚さは RC 梁と同じく 210mm,想 定したひび割れの角度は 35°とし,幅は 0.2mm, 深さは 140mm の位置から水平な枝分かれを 100mm としたモデルである。メッシュサイズは,ひび割 れ部に向かって要素密度が高くなるように分割 し,ひび割れ内部は幅 0.2mm 方向を 2 分割した。

図-5 ひび割れ進展状況と熱画像(15:20)

なお,対象構造物は図-7 に示すように鉛直なコ ンクリート壁を想定したもので,エアーキャップ は図-6の上面(日の出側)及び低面(日没側)の両 面に施したものとする。

3.2 入力日射量及び外気温と解析条件

表-3には解析に用いた熱特性を,図-8(a),(b) には入力した各方位別の外気温を,図-9(a)~(d) には直達日射量を示す。図表中の記号Aはエアー キャップ面をNは通常のコンクリートを示す。外 気温は日射を受ける時間帯は基礎実験で得られ た日射面側の温度を日陰時間帯は日陰面側で得 られた温度を各方位別に算定された時刻にあわ せて入力した。水平面の直達日射量は,基礎実験 で得られた全天日射量(880W/m²)を基に,図-3 に 示す 2L32 及びN試験体で得られたコンクリート 温度の推移に一致するように日射量と熱伝達係 数を変化させて繰り返し計算を行い再現した。次 に各方位別の鉛直面への直達日射量では、この水 平面で得られた直達日射量を基に計算した²⁾。な お,対象構造物の場所は東京で,日射を受けない 時刻の日陰面には天空日射量の半分を入力した。 また,解析時間は8月4日の0:00~24:00までの 24 時間とした。

図-7 太陽方位と鉛直構造物

表-3 解析に用いた熱特性

** **	密度	比熱	熱伝導率	熱伝達係数
17] 177	(kg/m ³)	[kJ/(kg⋅K)]	[W/(m·K)]	[W/(m ² ·K)]
コンクリート	2,200	0.876	1.4	6(A)
ひび割れ	1.161	1.009	0.0256	14(N)

3.3 解析結果

図-10(a) ~ (d)は, 図-9の日射量から得られた 健全部のコンクリート温度である。当然のことな がら直達日射を受ける時間が長くなるほど上昇 温度も大きくなっているが,エアーキャップと通 常のコンクリートを比較すると日の出側,日没側 ともに 10 程度の差であって,鉛直面の場合に は図-3 に示す水平面ほどの温度差は得られてい ない。コンクリート温度が最大となる時刻は,北 東面(45°)から北面(360°)になるほど遅くなっ ているが,北東面では9:40と17:40にピークが 現れており,反対面である南西面の熱伝達が影響 したことが分かる。北面も,最大日射時刻11:50 に対して上昇温度のピークは17:20である。

図-11(a),(b)は図-6 に示すモデルの上面(日の 出面)の左端から 450mm の位置(枝分かれの中央) と底面(日没面)のひび割れ位置境界部(左端から 200.2mm)の温度から健全部温度を減算しした温

度差変化である。この両者の位置は,上面及び底 面で最も温度差が大きくなる箇所である。日の出 側は,上面と枝分かれ部との距離は70mmである。 そのエアーキャップ(A)と通常(N)の温度差変化 を比較すると,通常では 0.13 程度の温度差に 対してエアーキャップの東面及び南東面では 0.3 程度の温度差が得られており熱画像からも 変状部として検出可能と思われる。一方,ひび割 れ発生面である日没側のエアーキャップでは,各 面ともに通常の2倍以上の温度差となっており, ひび割れ発生位置から進展方向の確認が可能で ある。しかし,鉛直北面は両者ともに0.2 程度 の温度差であり、エアーキャップの効果は得られ ていない。赤外線カメラでの測定では,このよう な特徴を有する温度変化からエアーキャップを 取り外す最適な診断時刻を各方位面別に予測す る必要がある。

表-4 は 図-9 に示す各方位別の最大日射時刻 と図-10 に示すコンクリートの最大上昇温度時 刻を比較したものである。日の出側では最大温 度時刻は最大日射時刻の2時間後,日没側では 北面以外は1時間後である。また,図-13 は最 大上昇温度の時刻までの日射量を日の出時刻か ら図-9 を積算した日射積分量と上昇温度の関 係である。この上昇温度は,最大温度から日の 出時の温度を減算したものである。日没側は, 日の出側からの熱伝達によって若干上昇温度が 大きくなるが,両者はほぼ比例関係にある。

本報告は,太陽高度の高い夏季での一例では あるが方位は既知であり,年間を通して図-9の 日射量も算出可能であることから,最大温度時 刻及びその日射積分量も推定可能であり,日射 積分量から上昇温度を予測することができる。 また,エアーキャップを外しての診断時刻は, 可能な限り深い位置まで潜在するひび割れまで が評価できるように設定する必要がある。最大 上昇温度の時刻は予測可能であり,図-11 の最 大温度との関係から北面以外は各方位ともに最

表-4 最大日射時刻と最大上昇温度時刻

大温度が得られる時刻を指標として測定すれば 良いことになる。

4.まとめ

本研究で得られた所見を以下に示す。 (1) 収熱効果は,エアーキャップの粒径 32mm・ 粒高 13mm が最も上昇温度が大きくなり 標 準試験体よりも 22 の有意差が得られた。

- (2) 日陰面となる構造物を想定した RC 梁の実験では、上面からの熱伝達からひび割れ部には低温域が現れ、内部のひび割れ進展状況が評価できた。
- (3) コンクリートの方位から最大温度時刻及び その日射積分量も推定可能であり,日射積 分量から上昇温度を予測することができる。
- (4) コンクリートの方位と最大上昇温度となる 時刻には良好な相関性があり,エアーキャ ップを外しての測定時刻が予測できる。

参考文献

- 1) 金光寿一・柳内睦人・江藤 亮:太陽光促進加 熱からの熱伝達を利用したコンクリート内部 のひび割れ評価,シンポジウム コンクリート 構造物への非破壊検査の展開,pp.85-94,(社) 日本非破壊検査協会,2006.8
- 2)金山公夫・馬場弘: ソーラーエネルギー利用技術, pp.26-41, 森北出版