論文 構造体コンクリートの超音波法による緻密性の評価

森濱 和正*1

要旨:新設鉄筋コンクリート構造物を,非破壊・微破壊試験によって直接検査する方法について検討している。今回は超音波法を用いて,耐久性に大きな影響を及ぼすコンクリート表層の緻密性評価について検討した結果を報告する。検討した方法は,コンクリート内部の音速分布を推定し,その音速分布と耐久性の指標である吸水率との関係を求めた。その結果,耐久性の評価が可能性があることを明らかにした。

キーワード:構造体コンクリート,非破壊試験,耐久性評価,超音波法,音速分布

1. はじめに

新設鉄筋コンクリート(RC)構造物が要求性 能を満足していることを確認するために,施工 時の中間あるいは竣工時の検査は重要である。 ところが,検査の現状は,構造体の品質を検査 していないため,新設 RC 構造物の性能を確認す るものとはなっていない。筆者らは,新設 RC 構 造物を非破壊・微破壊試験によって検査し,維 持管理にも役立つ方法を提案するために,さま ざまな検討を行い¹⁻⁵,鉄筋のかぶり厚さ⁴⁾や, コンクリート強度の検査方法⁵⁾を提案してきた。

RC 構造物にとって最も問題になっているの は耐久性であり,新設時に耐久性が評価できる ことが望まれている。筆者らは,既に超音波法 による耐久性評価の可能性について報告してい るが^の,まだ定性的な評価に限られており,今回, 構造体コンクリートの耐久性の検査方法を確立 することをめざし,検討した結果について報告 する。

耐久性には多くの項目がある。ここでは, RC 構造物の耐久性にとって最も期待されている鉄 筋の腐食に対する抵抗性の評価を対象とする。 鉄筋腐食の主要な原因は, コンクリートの中性 化と塩化物イオンの拡散である。そのため, 鉄 筋の腐食抵抗性を評価するには, 二酸化炭素や 塩化物イオンのコンクリート内への浸透・拡散 の抵抗性を確認する必要がある。 腐食促進物質のコンクリート内への浸透・拡 散抵抗性を確保するためには,かぶり厚さの確 保とコンクリート表層が緻密であることが必要 であり,ここでは後者の緻密性について超音波 法を用いて評価する方法の検討について報告す る。

2. 緻密性試験方法の問題点

緻密性を評価する主な試験方法は, 表-1のと おりである^の。これまで,多くの場合,電気泳動 法などによる塩化物イオンの拡散係数や,促進 中性化試験による中性化速度の試験が行われて いる。

しかし,構造体コンクリートの耐久性を検査 するために,標準コアを採取してこれらの試験 を行う場合,損傷が大きいこと,結果が得られ

区分	試験方法	評価対象	不均質性	精度	
非 破壊	超音波	缬宓性	0	今後, 検討が 必要	
	衝撃弾性波	夏日日			
	トレント法	透気性			
	電磁波レーダ	塩化物イオン量			
微 破壊	ボス供試休	中性化, 塩化物		0	
	小八天武平	イオンのモニタリンク		0	
		中性化深さ	×	0	
	ドリル法	塩化物イオン量		Δ	
		透気·透水		Δ	
	小怒って	中性化深さ		\circ	
	いゴモゴン	塩化物イオン量		0	
破壊	標準コア	各種試験		(基準)	

表-1 耐久性評価試験方法の比較⁶⁾

*1 土木研究所技術推進本部構造物マネジメント技術チーム 総括主任研究員 (正会員)

るまでに長時間を要するなどの問題があること から、実質的には検査に用いることはできない。

微破壊試験による同様の試験も検討されてい るが,損傷を小さくすることはできるものの, 試験時間の問題を解決することはできない。ド リル法による透気・透水試験は,比較的短時間 で試験できるが,含水率の影響が大きいなどの 問題がある。

最近,非破壊試験方法も研究されている。し かし,後述する超音波法以外の非破壊・微破壊・ 破壊試験方法は,ある一定長さのコンクリート は均一であることを仮定している。ところが, 構造体コンクリートの耐久性は,表層コンクリ ートの耐久性能が重要な役割を果たすが,表層 コンクリートは,一般には,表面に近いほど品 質は劣っていることが知られており⁷⁾,均一では ない。そのため,表層の緻密性の評価は,不均

図

一1 コンクリート内部の音速分布⁹⁾

図-3 音速と吸水率の関係 ⁹⁾

質性を評価することが重要である。

3. 超音波法による緻密性の評価方法

筆者らが提案している超音波法による緻密性 の評価は、コンクリート内部の音速分布を推定 することによって行う方法である。音速分布の 推定方法は、既に文献 2)、6)などで報告してお り、ここでは割愛する。この方法により図-1の ようにコンクリート内部の音速分布を推定する ことができる。図中の曲線および直線が推定し た音速分布であり、プロットはコアの半径方向 の音速測定結果である。表面の音速 Vo は遅く、 内部ほど速いが、しだいに音速は一定になる。 音速分布の推定では、表面音速 Vo、一定音速(内 部一定音速 V1)とそこまでの距離 h1 を求める。

これまでは,音速分布が緻密性を表している ことを確認するために,コアを採取して薄く輪

図-4 内部一定音速位置と最小吸水率位置の関係⁹⁾

切りにした両面の顕微鏡による気泡分布の測定 ⁸⁾や,吸水率⁶⁾,細孔量⁶⁾の測定結果と音速の関 係を求め,両者には相関関係があり,音速と緻 密性には密接な関係があることを明らかにして いる。

例えば,音速分布 (図-1)の Vo, V1, h1 と, 吸水率分布 (図-2)から表面の切片の吸水率 (表 面吸水率)Qo,吸水率が最も小さい最小吸水率 Q1,最小吸水率までの距離h1の関係を求める と,図-3および図-4のような関係が得られる ⁹⁾。音速と吸水率の関係は,音速が速いと吸水率 は小さくなる。内部一定音速までの距離h1と最 小吸水率までの距離h1の関係もおおよそ同じ位 置に対応しているようである。しかし,図-3の 音速と吸水率の関係は,構造物によってかなり 異なっている。配合条件,養生条件の違いなど の影響を受けていることが考えられることから, それらの関係を求めることとした。

4. 各種条件下における音速と緻密性の関係

4.1 実験方法

これまで測定してきた多くの供試体の測定結 果^{2),6),9)}から,セメントの種類,養生条件,経時 変化を測定しているものを抽出し,音速分布に 関する指標 Vo, V1, h1 と,吸水率分布に関する 指標 Qo, Q1, h1の関係を求めた。

4.2 実験に用いた供試体の概要

実験は,壁状の供試体を用いて2回行なった。 1回目の供試体は,高さ1.8m,幅2.55m,厚さ は上が0.28m,下が0.65mの台形状の断面である。 コンクリートは,普通ポルトランドセメント(N) を用い,呼び強度は18,27,40の3種類である。 以下、コンクリートの種類を、セメントの種類 と呼び強度で N18 のように示す。配合を表-2 に示す。養生は、7日間湿布養生を行なった。

2回目の供試体は、高さ1.5m、幅2.0m、厚さ 0.3m である。コンクリートは、普通ポルトラン ドセメントを用い、呼び強度は18、24と、高炉 セメントB種(B)を用い、呼び強度24の3種 類である。配合を表-2に示す。養生は、3日間 湿布養生を行なった。

2回とも,音速の測定は,供試体高さの中間付 近を水平に測線をとった。測線は最大 1000mm とし,探触子中心間隔 400mm までは 50mm ずつ 増やしながら超音波伝搬時間を測定し,それ以 上は 100mm ずつ増やしながら測定した。

吸水率測定のためのコア採取は,音速測定の 中心付近で行なった。コアはφ100mm であり, 10mm 程度の厚さに輪切りにし,吸水率を測定し た。

4.3 実験結果

音速分布に関する指標 Vo, V1, h1, 吸水率分 布に関する指標 Qo, Q1, h1と材齢の関係を図 -5 および図-6 に示す。

図-5の音速分布について、(1)図の表面音速 Voと材齢の関係より、Voは、材齢の進行に伴い わずかに速くなる傾向にあること、また、呼び 強度が大きい(水セメント比が小さい)ほど速 くなる傾向にあるようであるが、それほど明確 ではない。Voは、主に探触子間隔が短いときの 伝搬時間から求められるため、バラツキが大き いものと考えられる。

内部一定音速 V1 は, (2) 図のとおり材齢の進行とともに速くなること,呼び強度が大きくな

宇眛	セメント の種類	呼び 粗骨材の 強度 最大寸済	粗骨材の	スランプ	空気量	水セメント	細骨材	単位量(kg/m ³)				
大歌			最大寸法	(cm)	(%)	比(%)	率(%)	水	セメント	細骨材	粗骨材	混和剤
1回目 の実験	N	18	25mm	8	4.5	63.0	44.9	158	251	824	1026	2.69
		27				49.5	43.2	158	320	771	1023	3.42
		40				38.0	41.0	159	419	696	1015	4.48
2回目 の実験	N	18		0	3 4.5	67.0	44.9	160	239	849	1049	2.55
		24	20mm	0		57.5	43.5	157	274	813	1065	2.92
	В	24		8	4.5	56.5	43.6	153	271	818	1065	2.89

表-2 コンクリートの配合

(1) 表面吸水率 Qo と材齢の関係

(2) 最小吸水率 Q1 と材齢の関係

(3) 最小吸水率までの距離 h1 と材齢の関係

図-6 吸水率分布に関する指標 Qo, Q1, h1 と 材齢の関係

(2) 内部一定音速 V1 と材齢の関係

(3) 内部一定音速までの距離 h1 と材齢の関係

図-5 音速分布に関する指標 Vo, V1, h1 と 材齢の関係

るほど速くなっており,コンクリートの品質を よく表している。V1は,主に探触子間隔が広く, 何点も測定した結果から求められるため,比較 的安定した結果が得られるものと考えられる。

(3) 図の内部一定音速までの距離 h1 は, 材齢 の進行に伴い大きくなる傾向があるようである。

図−6 の吸水率分布は明確な関係はわかりに
くいため、図−7 のように音速との関係で表した。
(1)図の表面音速 Vo と表面吸水率 Qo は、呼び強度によって Vo の変化はあるものの、Qo との関係は不明である。

(2)図の内部一定音速 V1 と最小吸水率 Q1 の 関係は、Q1 が小さくなるほど V1 は速くなる傾 向があり、V1 は緻密性を表している。呼び強度 による Q1 の違いはほとんどないが、V1 は呼び 強度が大きいほど速くなっている。

(3)図の内部一定音速までの距離と最小吸水 率までの距離は、後者が小さい傾向はあるが、 ほぼ相関関係があることがわかる。

4.4 水セメント比と内部一定音速の関係

以上の結果より,表層の音速と吸水率の明確 な関係は得られなかったものの,内部一定音速 V1 は緻密性を表していることがわかった。そこ で次に水セメント比と V1 の関係を材齢ごとに 表すと図-8のようになる。

水セメント比と V1 の関係は, 材齢ごとに明確 な相関関係があることがわかる。水セメント比 が大きくなると直線関係からはずれる傾向があ るため, 2回目の N18 (W/C=67%)を除いて一 次回帰したときの回帰係数と寄与率 r²を表-3 に示す。表-3のとおり, 傾きは, 材齢4週はや や大きいものの, そのほかの材齢はほぼ同じで ある。傾きがほぼ同じであるため, Y 切片は材 齢に伴い大きくなっている。寄与率は, 1週がや や小さいものの, それでも0.7以上である。その ほかの材齢では0.9以上と, 非常に高い。

塩化物イオンの拡散係数,中性化速度係数な どは,水セメント比と強い相関関係があること はよく知られていることである。水セメント比 と V1 に強い相関関係があるということは,V1

(1) 表面音速 Vo と表面吸水率 Qo の関係

(2) 内部一定音速 V1 と最小吸水率 Q1 の関係

(3) 内部一定音速までの距離と
 最小吸水率までの距離の関係

図-7 音速分布の指標と吸水率分布の 指標の関係 によって耐久性も評価できるものと考えられる。

実際に文献 6)でも、音速分布によって塩分浸 透深さや中性化深さをある程度推定できること もわかっており、今回、材齢ごとに水セメント 比と V1 の間に高い相関関係があることがわか ったことから、構造体コンクリートをどの材齢 で検査しても耐久性を評価できることを示して いる。

5. まとめ

筆者らの提案する超音波法によってコンクリ ート内部の音速分布を推定し,耐久性を評価す ることができないか検討した。その結果,次の ようなことが明らかになった。

- (1) 音速分布と、緻密性の指標値として吸水率の関係を求めると、呼び強度ごとに内部一定 音速V1と比較的高い相関関係があることがわ かった。
- (2) 水セメント比と V1 の関係を測定材齢ごと に求め、非常に高い相関関係があり、しかも 傾きがほぼ一定で、切片は材齢に伴い大きく なる傾向があり、耐久性評価に適用可能であ る。
- (3) Qo と Vo については、明確な関係が得られ なかった。ただし、(2)のとおり V1 と水セメン ト比は高い相関関係があることから、表層の 耐久性が劣っている部分も音速分布によって 評価できるのではないかと考えられる。今後 の検討課題としたい。

参考文献

- (1) 森濱和正ほか:非破壊試験によるコンクリートの品質、部材厚さ、かぶり厚さの検査方法に関する研究,コンクリート工学年次論文集, Vol.23, No.1, pp.511-516, 2001.7
- 2) 森濱和正ほか:非破壊試験によるコンクリート品質、厚さ、鉄筋かぶり・径の計測に関する研究第1報実験概要および超音波法,非破壊検査, Vol.52, No.9, pp.497-503, 2003.9
- 3) 同上 第2報 レーダ法および衝撃弾性波法, Vol.52, No.12, pp. 691-696, 2003.12

図-8 水セメント比と内部一定音速の関係

	-		
材齢	傾き	切片	r²
1週	-6.53	4627	0.761
2 週	-5.94	4621	0.942
4週	-13.45	5099	0.984
3 箇月	-5.65	4713	0.983
7 箇月	-7.93	4884	0.952
1 年	-6.25	4952	0.999

表-3 水セメント比と V1 の回帰結果

- 4) 中村英祐ほか:鉄筋径を利用した非破壊試験 による比誘電率分布とかぶりの推定、コンク リート工学年次論文集, Vol.27, No.1, pp. 1801-1806, 2005.6
- 5) 森濱和正ほか:構造体コンクリートの非破 壊・微破壊試験による強度検査に関する検討, コンクリート工学年次論文集, Vol.28, No.1, pp. 1931-1936, 2006.7
- 6) 森濱和正ほか:超音波法によるコンクリート 品質の評価,コンクリート工学, Vol.44, No.5, pp.35-40, 2006.5
- 7) 例えば,湯浅昇ほか:乾燥を受けたコンクリートの表層から内部にわたる含水率,細孔構造の不均質性,日本建築学会構造系論文集, 第 509 号, pp.9-16, 1998.7
- 8) 森濱和正ほか:コンクリート表層の凍結融解 抵抗性の評価 その 1 表面からの距離と空気 量,気泡間隔係数,その2 音速分布と空気量, 気泡間隔係数の関係,第60回セメント技術大 会講演要旨,pp.102-103, pp.124-125, 2006.5
- 9) 森濱和正:非破壊・局部破壊試験によるコン クリート構造物の品質検査に関する共同研究 超音波法 その 12 音速分布による緻密性の評 価,日本非破壊検査協会,平成 18 年秋季大会 講演概要集,pp.133-136, 2006.10