論文 150N/mm²を超える超高強度コンクリートの各種性状

都築 正則*1·一瀬 賢一*2·神代 泰道*2

要旨:特殊シリカ質微粉末を用い,実強度150N/mm²を超える超高強度コンクリートの各 種性状について検討したところ,以下のことが得られた。(1)W/Bによらず,自己収縮ひず みは1m角ブロック中心部において700µ程度であった。(2)コア試験体の圧縮強度は,W/ B=14%の場合,材齢91日で178N/mm²,材齢1年で192N/mm²であった。(3)乾燥収縮試験は 材齢850日の長期材齢において250~400µ程度であり,W/Bが低いほど小さい値を示し た。(4)中性化深さは全て0mmであった。凍結融解試験による相対動弾性係数の低下はな かった。

キーワード:超高強度コンクリート,自己収縮,乾燥収縮,中性化,凍結融解

1.はじめに

都心部において,集合住宅を中心とした超高 層 RC 造建築物の施工実績が増加し,100N/mm²を 超える超高強度コンクリートが実用化され始め ている。このような超高強度コンクリートの製 造を可能にするには,シリカフュームの利用が 不可欠である。筆者らは,このシリカフューム選 定に当り,特殊シリカ微粉末(以下ZF:非晶質の SiO₂が主成分であり,平均粒径が1µm程度の球 形粒子。従来のシリカフュームより比表面積が 小さい。)を用いたコンクリートの性状を検討し, 適用性を報告した¹⁾。

本研究では,ZFを用いた150N/mm²を超える超 高強度コンクリートの各種性状の把握を目的と して水結合材比(以下W/B)14~20%のコンクリー トについて,フレッシュ性状および圧縮強度の 他,実機試験では沈下量,自己収縮性状,曲げ・ 割裂引張強度,室内試験では乾燥収縮,促進中性 化,凍結融解抵抗性の各種性状を検討した。

2.実機試験練りにおける検討

2.1 実験水準と使用材料

対象となるコンクリートは, W/B=14, 17, 20% の3水準とした。使用材料を表 - 1 に示す。セメ

*1 ㈱大林組 技術研究所 建築材料研究室 工修(正会員)

*2(株)大林組 技術研究所 建築材料研究室 工博(正会員)

ントは中庸熱セメント(M),混和材にはZFをコン クリート練混ぜ時に使用した。細骨材(S)および 粗骨材(G)は安山岩砕砂・砕石。化学混和剤(Ad) はポリカルボン酸系化合物を主成分とする高性 能減水剤を使用した。自己収縮低減用²⁾として石 灰系膨張材を,爆裂防止用として有機繊維(PP) を使用した。

2.2 調合

調合を表 - 2 に示す。調合は,W/B=14,17,20% とし,単位水量を150~155kg/m³(高性能減水剤 を含む),目標空気量を2%以下,繊維混入後の 目標スランプフローを65±10cmとした。ZFと膨

使用材料 表 - 1 材料 記号 仕様 セメント М 中庸熱セメント,密度3.21g/cm³ 特殊シリカ質微粉末, ZF 密度2.30g/cm³,比表面積8.7m²/g 混和材 ЕΧ 石灰系膨張材,密度3.19g/cm³ 砂 S 安山岩砕砂,表乾密度2.64g/cm³ 砂利 安山岩砕石,表乾密度2.63g/cm³ G 減水剤 ポリカルボン酸系高性能減水剤 Ad 添加材 PP (爆裂防止用)有機繊維

表 - 2 調合表

锢合 ₩/B s/a			単位量(kg/m³)						Ad
히므	117 D	3/4	W		В		c	<u> </u>	使用量
記ち	(%)	(%)	VV	М	ZF	ΕX	3	G	(B×%)
MZ20EX	20	43.9	155	639	116	20	657	842	0.85
MZ17EX	17	39.1	155	752	137	23	538	842	1.02
MZ14EX	14	33.0	150	884	161	27	412	842	1.33

張材は結合材重量(=B)の内割りとして15%,2.5% 混入した。爆裂防止用有機繊維は,コンクリート 外割りで1.0kg/m³(0.11%/vol)添加した。 2.3 練混ぜ方法

コンクリートの練混ぜは,材料投入後,空練り 10秒,水投入後,モルタル先練り(60~120秒) を行い,粗骨材投入後(60~120秒)練混ぜを行っ た。練混ぜ時間は,低W/Bの調合ほど長く,十分 な練混ぜを確認するまでとした。有機繊維は, ベースコンクリートのフレッシュ性状を確認後, アジテータ車に投入し,2分高速攪拌した。 2.4 試験項目および測定方法

試験項目および測定方法を表-3に示す。圧 縮強度試験体において,1材齢につき,標準水中 養生,簡易断熱養生(厚さ20cmの発泡スチロール 製養生箱にて封緘養生を行ったもの)は各3本, コア試験体はマスブロックの内側と外側で各4本 の計8本とした。

自己収縮性状は,1m角ブロックの中心に,打 設面に対して垂直方向に埋込型歪計を設置し, 測定した。測定は打設時直後を始点とし,材齢約 10日までとした。コア試験体の採取位置および, 埋込型歪計取付位置を図-1に示す。

曲げおよび割裂引張強度の試験体はそれぞれ, 10 × 10 × 40cmの角柱試験体,10 × 20cmの円 柱試験体とした。試験体は1材齢につき,各3本 とした。沈下量は, 15 × 30cmの鋼製型枠内部 にテフロンシートを貼付し,コンクリート打設 直後から,レーザー変位計にて測定した。

3. 試験結果

3.1 フレッシュ性状試験結果

フレッシュ性状試験結果を表 - 4 に示す。空 気量はベースコンクリートで0.8 ~ 1.4,繊維混 入後で1.7 ~ 2.0%となり上昇する傾向となった。 これはアジテータ車ドラム内での繊維攪拌時の 巻き込み空気が原因と考えられる。コンクリー ト温度は15.0 ~ 17.0 程度であった。コンク リートの粘性はW/Bが小さくなるにつれ増大し, 0ロートの流下時間は長くなった。その傾向はW/

表-3 試験項目および測定方法

試験項目	測定方法	対象試験体		
フレッシュ性状	各JIS等による			
泪度履麻肿性	執電対にFZ	1m角ブロック		
应 皮 假 萨 注 1入	恐电灯による	簡易断熱試験体		
自己収縮	埋込型歪計による	1m角ブロック		
		標準水中養生試験体		
圧縮強度	JIS A 1108	簡易断熱試験体		
		コア試験体		
静弾性係数	JIS A 1149	コア試験体		
曲げ強度	JIS A 1106	標準水中養生試験体		
割裂引張強度	JIS A 1113	標準水中養生試験体		
沈下量	レーザー変位計	気中(15φ×30cm)		

図 - 1 コア採取・温度測定・ひずみ測定位置

表 - 4 フレッシュ性状

記号	PP	Air	СТ	スランプ フロー (×)	네-미0	単位容 積質量
	総成金田	(%)	()	(cm)	(S)	(kg/m^3)
MZ20EX	無	1.4	15.5	79.0 × 79.0	19.2	2447
	有	1.8	15.0	70.0 × 70.0	18.6	2435
MZ17EX	無	0.8	17.0	71.0 × 70.5	21.3	2468
	有	1.7	17.0	66.0 × 65.0	20.2	2450
MZ14EX	無	1.3	17.0	78.0 × 78.0	44.0	2484
	有	20	17 0	73 5 × 73 5	37 2	2474

B=14%において特に顕著であった。

図 - 2 にスランプフローと高性能減水剤使用量の関係を示す。高性能減水剤の使用量は, W/B が低くなるにつれ,多くなった。フロー値全体では 66cm ~ 79cmの範囲を示し,繊維混入後のフロー 値は5~9cm程度低下した。W/Bが大きいほど繊 維混入後のフロー低下は顕著であった。これは, W/Bが大きいほど高性能減水剤使用量が少なく, フローの保持性能が小さいためと考えられる。 3.2 温度履歴性状

コンクリート温度は測定箇所・調合によらず, 打設時から1~1.5日前後で最高温度に到達し, その後,材齢10日前後で外気温(約10)と同程 度となった。

図 - 3 に簡易断熱試験体と1m角ブロックの各 測定位置における最高温度を示す。W/Bが低くな るにつれ,1m角ブロックおよび簡易断熱養生試 験体共に最高温度は高くなる結果となった。1m 角ブロック中心温度は62~73 を示し,外側(中 心から450mm外側の位置)温度は中心温度から20

前後低い値となった。簡易断熱試験体の最高 温度は47 ~ 54 を示し,同一調合内の1m角ブ ロックの外側温度とほぼ同程度であった。

3.3 沈下量試験結果

図 - 4 に沈下量の経時変化を示す。沈下量は 計測開始から4時間程度(プラントミキサー内で の水投入時刻から5時間程度)でほぼ収束し,そ の値は両W/Bで1mm程度であった。

3.4 自己収縮性状試験結果

図-5に,埋込型歪計によって測定した1m角 ブロック中心における自己収縮ひずみの経時変 化を示す。ひずみは埋込型歪計ごとに校正した 値から,コンクリートの線膨張係数を10µ/ と 仮定して,熱膨張ひずみを取り除いた。初期値の 0点はコンクリート打設直後の値とした。

図より,コンクリートのひずみは,測定開始か ら0.2日程度(=5時間程度)から著しく大きくな り,材齢2~3日程度でほぼ収束した。その値は W/Bに関わらずほぼ700µ程度であった。自己収 縮ひずみはW/B が小さくなるにつれ大きい値を 示すことが考えられるが,今回の実験ではその ような傾向は見られなかった。この理由として, 膨張材の混入率が結合材に対して同じであるた め,W/Bが小さいものほど膨張材単位量が多いこ とが原因と考えられる。

3.5 圧縮強度試験結果

(1) 標準水中養生における強度

材齢28~91日における標準水中養生の強度試 験結果を図 - 6に示す。材齢28日では,結合材 水比(以下=B/W)によらず152N/mm²程度で強度の 頭打ちが見られた。材齢56日および91日におい ては,W/B=20%の強度が一番大きい結果となっ た。(W/B=14%の91日強度は,28日よりも低い値 となっている。試験体加圧面の精度が影響した と思われるが定かではない。)今試験では、B/Wと

強度の間に比例関係は確認できなかった。

 (2) 標準水中養生とコア試験体の強度発現性状 標準水中養生とコア試験体の強度発現性状を
 図 - 7 に示す。標準水中養生試験体の圧縮強度
 は,材齢 91 日では、150 ~ 160N/mm² 程度であった。W/B=14%のコア試験体強度は,材齢 91 日で
 178N/mm²,材齢1年で192N/mm²であった。

調合別にみると,W/B=20%の場合,材齢91日 までは標準水中養生試験体がコア試験体よりも 10N/mm²程度大きいが,材齢1年までに同程度の 強度となった。W/B=17%では,試験体種類に関わ らずほぼ同程度の強度であった。W/B=14%の場 合,全ての材齢でコア試験体が,約20N/mm²上回 り,標準水中養生試験体強度が長期においても, コア試験体強度に追いつかない結果となった。

材齢28日および56日における,コア試験体強 度は,外側よりも内側のほうが大きく,W/Bが大 きいほどその差は顕著であった。しかし,材齢91 日になると内外の強度差は小さくなり,W/B=20% では,材齢91日,1年後の強度は外側のほうが大 きくなった。これは,1m角ブロック内の内外コ ア採取位置での最高温度が異なったため,その 強度発現に違いが生じたためと考えられる。

(3) 簡易断熱とコア試験体強度の関係

簡易断熱とコア試験体強度の比較を図 - 8 に 示す。材齢28日では、W/B=14%のコア試験体強 度に大きいものが見られるが、材齢56、91日で はW/Bによらずほぼ同程度であった。このことか ら材齢56および91日において、簡易断熱養生試 験体によりコア強度試験体強度を概ね推定でき ることが分かった。

(4) 静弹性係数試験結果

各コア試験体の 静弾性係数と圧縮強度の関係 を図 - 9に示す。静弾性係数は,4.0×10⁴~4.7 × 10⁴N/mm²の範囲であった。材齢28日~1年の 全ての材齢において New RC 式³⁾で概ね推定でき る結果となった。

(5) 曲げ・引張強度試験結果

図 - 10に材齢91日の圧縮強度と曲げ・割裂引 張強度の関係を示す。曲げ強度は9.2~9.7N/mm² (圧縮強度の1/17程度),引張強度は4.7~5.2N/ mm²(圧縮強度の1/32程度)であった。野口らの 提案式⁴⁾と比較すると今回の試験結果は,曲げ・ 割裂引張強度共に小さい値を示し,提案式の2/3 程度であった。今後,さらなるデータの蓄積が必 要であると思われる。

4. 室内試験練りにおける検討

4.1 実験概要と実験項目

室内試験練りでは,乾燥収縮性状,促進中性 化,凍結融解抵抗性の各種性状について検討し た。コンクリートの使用材料は,実機試験と同等 のもの(表 - 1参照)を用いたが,ここでは爆裂防 止用繊維添加の有無は行っていない。

調合を表 - 5 に示す。W/Bは14,17,20%とし, 単位水量は150kg/m³とした。目標空気量を2%以 下,目標スランプフローを65 ± 10cmとした。ZF は,セメントの内割りで10% ~ 15%とした。コン クリートの練混ぜは,2軸強制練りミキサ(100L) を用いて,細骨材 + セメント + ZFを投入後15秒 間空練りし,モルタルで90 ~ 180秒間,粗骨材 を投入後90 ~ 120秒間練混ぜた。

4.2 試験項目

圧縮強度試験は,標準水中養生試験体を対象 とした。乾燥収縮試験は,JIS A 1129のコンタ クトゲージ法で行った。試験体は翌日脱型後,材 齢7日まで標準養生し,以後,20±2,60±5 %RHの恒温恒湿室にて静置し測定を行った。促 進中性化試験は,JIS AI153に準じて行った。試 験体は材齢28日まで標準養生,材齢56日まで恒 温恒湿室にて前養生を行い,試験を開始した。凍

結融解試験は,JIS A 1148のA法(水中凍結融解 試験)で行った。試験体は材齢28日まで標準養生 を行い,試験を開始した。

4.3 実験結果

(1) フレッシュ及び強度発現性状

フレッシュ性状試験, 圧縮強度試験結果を表 - 6 に示す。空気量,スランプフロー値共に目標 値を満足した。圧縮強度は材齢 91 日で 170N/mm²

表-5 調合表(室内試験練り)

	W/P c/c		単位量(kg/m ³)						Ad
記号	W/D	5/a	W		В		c	C	使用量
	(%)	(%)	vv	М	ZF	EX	0	0	(B×%)
MZ20EX	20	45.5	150	656	75	19	704	845	1.00
MZ17EX	17	41.3	150	772	88	22	591	845	1.35
MZ14EX	14	32.9	150	884	161	27	413	845	2.15

表 - 6 フレッシュ性状と圧縮強度

	٨	スランプフロー	圧縮強度(N/mm ²)				
記号	AII	(×) 材齢					
	(%)	(cm)	28日	56日	91日	1年	
MZ20EX	1.4	76.5×74.5	135	160	168	178	
MZ17EX	1.3	72.0×70.5	154	167	174	188	
MZ14EX	1.9	65.0×63.5	157	166	172	180	

程度,材齢91日~1年では10~15N/mm²程度の 強度発現を示した。

(2) 乾燥収縮試験結果

乾燥収縮ひずみの測定結果を図 - 11に示す。 測定値は材齢200日において250~300µ,材齢 850日の長期材齢においても250µ~400µ程度 であった。W/Bが小さいほど,その値は小さい結 果となった。重量減少率は,0.3~0.6%の範囲で あり乾燥収縮率同様,W/Bが小さいほど,その値 は小さい結果となった。このことから,W/Bが小 さいほどその組織が緻密になり,自由水逸散が 少なく乾燥収縮率が小さいことが分かる。

(3) 促進中性化試験結果

促進中性化試験結果の一例として,W/B=17%の 呈色状況を写真 - 1に示す。促進材齢26週にお ける中性化深さは,W/Bによらず,3調合共に0mm であり,中性化の進行は全く認められなかった。

(4) 凍結融解試験結果

凍結融解試験結果を図 - 12に示す。空気量 を2.0%以下としても,相対動弾性係数は300サ イクル終了後でも全く低下せず,凍結融解抵抗 性に優れていることを確認した。

5.まとめ

実強度150N/mm²を超えるW/B=14,17,20%の 超高強度コンクリートの各種性状について,実 験により,以下のことが得られた。

- (1) W/Bによらず、1m角ブロック中心における自
 己収縮ひずみは700 µ程度を示した。
- (2)コア試験体の圧縮強度は、W/B=14%の場合、材 齢91日で178N/mm²、1年で192N/mm²であった。
- (3) 材齢 91 日において、曲げ強度は 9.5N/mm² 程
 度,割裂引張強度は 5.0N/mm² 程度であった。
- (4) 乾燥収縮試験は材齢 850 日においても,250 ~400 µ 程度と小さいものであった。,W/Bが 小さいほど,低い値を示した。
- (5)中性化深さは全てのW/Bで0mmとなり中性化 の進行はなかった。また,凍結融解試験にお いて相対動弾性係数の低下はなく,凍結融解 抵抗性に優れていることが分かった。

図 - 1 1 乾燥収縮ひずみ経時変化

写真 - 1 中性化試験結果(W/B=17%、材齢 26 週)

参考文献

- 神代泰道ほか:ジルコニア起源シリカ微粉末 混合セメントを用いた超高強度コンクリート の性状,コンクリート工学年次論文集, Vol.27, No.1, pp.1057-1062,2005
- 2) 谷村充ほか:高強度コンクリートの収縮低減 化に関する一検討,コンクリート工学年次論 文集, Vol.22, No.2, pp.991-996,2000
- (社)日本建築学会:鉄筋コンクリートの構造 計算基準・同解説, pp.39, 1999
- 4) 野口貴文ほか:高強度コンクリートの圧縮強 度と各種力学特性の関係,日本建築学会構造 系報告集, No.472, pp.11-16, 1995