論文 腐食ひび割れ発生点を限界状態とした RC 構造物の耐久信頼性設計 に関する基礎的研究

佐藤 広和^{*1}·李 月鳳^{*2}·秋山 充良^{*3}·鈴木 基行^{*4}

要旨:本研究は、コンクリート構造物の環境作用に対する性能照査を信頼性理論に基づく限 界状態設計法の枠組みの中で実現することを目的とした基礎的研究である。沿岸部などの塩 害環境に着目し、海洋からの塩分の飛来から鉄筋腐食発生、さらにはその後の腐食ひび割れ の発生までの予測に伴う種々の不確定性について、観測・実験データをもとに評価し、耐用 期間内に鉄筋腐食や腐食ひび割れが発生する確率を信頼性理論に基づき定量化した。耐久設 計をする際の限界状態を鉄筋腐食発生点から腐食ひび割れ発生点に変更することで、ある目 標限界状態到達確率を確保するための必要かぶりを大きく低減できる可能性が示された。 キーワード:塩害、信頼性設計、腐食ひび割れ、飛来塩分量、損傷確率

1. はじめに

著者らは,海洋環境下にある鉄筋コンクリー ト構造物を対象に,信頼性理論を用いることで, 地域毎の飛来塩分量の確率論的ハザードを示し, 海洋からの塩分の飛来から,鉄筋位置の塩化物 イオン濃度が限界値を超えるかどうかを判定す る一連のプロセスにあるバラツキを陽に取り込 むことで,耐用期間内の鉄筋腐食発生確率の算 定手法を提案した¹⁾。一方,鉄筋腐食が生じた鉄 筋コンクリート部材の構造実験結果を見る限り, 鉄筋腐食発生点では,構造性能は何ら低下して いないと思われ¹⁾,今後は,耐久設計でかぶりな どを決める際に,鉄筋腐食の発生をある程度ま で許容するような検討も必要になると考える。

本研究では、参考文献 1)に対し、鉄筋腐食発生 後の腐食速度と腐食ひび割れ発生時の鉄筋腐食 量の統計量を追加し、地域や海岸線からの距離に よる腐食ひび割れ発生確率の違いを定量化でき るようにした。そして、耐久設計における限界状 態を鉄筋腐食発生点から腐食ひび割れ発生点に 変更した際に、ある目標限界状態到達確率を確保 するための必要かぶりの差異などを試算した。

2. 腐食ひび割れ発生点を限界状態とした耐久信 頼性評価フロー

2.1 概説

RC 構造物で生じる腐食ひび割れの発生確率 を求めるフローの概略を図-1に示す。このフロ ーの中で, 塩害環境を表す指標のひとつである 飛来塩分量の確率モデル(ハザード曲線)の作成 (図中, step1 と step2)と, 塩化物イオンの拡散 を予測し、鉄筋位置の塩化物イオン濃度がその 腐食発生限界量を超過するかを判定するところ (図中, step3)までは, 参考文献 1)と同じである。 本研究では、これに、腐食ひび割れ発生時の腐 食減量に関する乾湿繰返実験や,鉄筋腐食速度 の定量化を目的とした暴露実験を既往の文献か ら収集し、腐食ひび割れが発生するまでの予測 に関わるバラツキを評価した(図中, step4)。こ れにより,任意の飛来塩分量に対する鉄筋腐食や 腐食ひび割れの発生確率(フラジリティカーブ)が 算定される(図中, step5)。最終的に、フラジリテ ィカーブとハザード曲線が求められることで,供 用開始後t年における鉄筋腐食や腐食ひび割れの 発生確率(損傷確率)pfを算定できる(図中, step6)。

*1	鹿島建設(柞	朱) 土	木設計本部	修(工)	(正会)	員)		
*2	東北大学	大学院	工学研究科	土木工学	専攻	修(工)		
*3	東北大学	大学院	工学研究科	土木工学	専攻准	教授	博(工)	(正会員)
*4	東北大学	大学院	工学研究科	土木工学	専攻教	授工	【博 (正	会員)

2.2 腐食ひび割れ発生の鉄筋腐食減量

Qi・関²⁾は、円筒モデルを基本算定モデルとし て、鉄筋腐食によるひび割れ発生時点の鉄筋腐 食量の基本算定式を誘導し、さらに有限要素解 析を実施することで、かぶり、鉄筋径、および コンクリート強度の影響を修正した腐食ひび割 れ幅と鉄筋腐食量の算定式(式(1))を提案してい る。鉄筋腐食量に影響する主要な因子を含み、 また、非常に簡易に腐食ひび割れ時点の鉄筋腐 食量を算定できることから、本研究では、既往

のモデルの中で式(1)を採用することにした。

$$W_{c} = \frac{\rho_{s}}{\pi(\gamma - 1)} \left(\alpha_{0} \beta_{0} \frac{0.22 \left\{ (2C + d)^{2} + d^{2} \right\}}{E_{c} (C + d)} f'_{c}^{2/3} + \alpha_{1} \beta_{1} \frac{C + d}{5C + 3d} w_{c} \right)$$
(1)

ここに、 W_c は鉄筋の腐食量(mg/mm²)、 ρ_s は鉄筋 密度、 γ は腐食生成物の体積膨張率、Cはかぶり (mm)、dは鉄筋直径(mm)、 E_c はコンクリートの 弾性係数(N/mm²)、 f'_c はコンクリートの圧縮強度 (N/mm²)、 w_c はひび割れ幅(mm)、 α_0 、 β_0 、 α_1 、 β_1 は補正係数²⁾である。

式(1)の算定精度を評価するため、既往の乾湿 繰返実験^{3)~5)}と電食実験^{0,7)}により得られた腐食 $減量の実験値と各供試体諸元から計算される<math>W_c$ から、(実験値)/(式(1)による計算値)の統計量を得 た。なお、実験における腐食ひび割れ発生時点 では、既にある程度のひび割れ幅が生じており、</sup> 統一したひび割れ幅に対応する鉄筋腐食量となっていない。ここでは、腐食ひび割れが確認されたときの最大ひび割れ幅が多くの場合で0.1mm程度⁴⁾であることや、ひび割れ幅が0.1mm以下であれば鉄筋腐食量との相関は小さいとの実験結果^{7),8)}が得られていることから、式(1)を計算する際には $w_c=0.1$ mmとした。実験結果との比較を図-2と図-3に示す。

(実験値)/(計算値)には、大きなバラツキが認め られるが、本研究では、これを腐食ひび割れ発 生時の鉄筋腐食量の予測に伴う不確定性として 扱う。両図の横軸は、コンクリート表面から鉄 筋中心までの距離を2倍した長さDを鉄筋径で 除した値であり、田中ら⁵⁾の実験では、D/dが2.0 ~3.0でひび割れパターンが変化することが報告 されている。しかし、本検討では、D/d と(実験 値)/(計算値)に特に相関は認められなかった。ま た, 電食実験では腐食ひび割れ発生時の鉄筋腐 食量が小さくなる⁴⁾ことを反映し, 図-2と図-3では、(実験値)/(計算値)の平均値が大きく異な る結果となった。本研究では、図-2と図-3の それぞれの統計量を用いた場合で、腐食ひび割 れ発生確率がどの程度異なるのかを算定する。 なお, 図-2 と図-3 の実験結果は, 相互に異な る実験条件から得られたものであり、それらを 式(1)で一律に評価しているため、(実験値)/(計算 値)のバラツキは非常に大きくなっている。今後 は、腐食ひび割れ発生確率を算定する構造物が 位置する環境に近い条件で実施された実験結果 に基づき(実験値)/(計算値)を評価したり,式(1) の見直しなども行うなどして、バラツキの低減 を図る必要がある。

2.3 鉄筋腐食速度式

コンクリート中の塩化物イオンが経年ととも に増加し、乾湿が繰り返されるような海洋構造 物と、コンクリート練混ぜ時から加えられる塩 化物イオンを含む構造物が内陸の一般の環境に 位置する場合では、鉄筋の腐食速度は異なるこ とが指摘されている⁹。しかしながら、現状では、 海洋環境下にある RC 構造物の鉄筋腐食速度を

用いた実験結果は参考文献 10)~12)であり, 回帰分析する際は,実験値との整合が良い松林 ら¹¹⁾の関数形を用いた。鉄筋腐食速度 V(mg/cm²/ 年)の回帰式を式(2)に示す。なお,実験結果を収 集する際は,参考文献 9)を参考に,かぶりは 10mm 以上,塩化物イオン濃度 1.12kg/m³以上, 水セメント比 40%以上,および中性化深さが鉄 筋位置に達しているデータは除くとする各条件 を設けた。これらは式(2)の適用条件でもある。

 $V = 2.718 \cdot e^{(0.0038 \text{ W/C} + 0.1693) \cdot Cl^{-}} \cdot C^{-0.5}$ (2)

図-5 既往の腐食速度式との比較(W/C=60%) ここに, W/C は水セメント比(%), *Cl*⁻ は塩化物 イオン濃度(kg/m³), *C* はかぶり(mm)である。

式(2)を用いた場合の(実験値)/(式(2)による計 算値)を図-4に示す。また、W/C=60%としたと きの既往の鉄筋腐食速度式との比較の一例を図 -5に示す。複数の実験結果をもとに式(2)の精度 を評価したため、(実験値)/(計算値)は非常に大き なバラツキを有する結果となった。中性化の影響 が小さくない実験結果に基づく笹渕ら¹³⁾の式よ りも平均的に小さな腐食速度を算定し、鳥取ら⁹⁾ の式よりも塩化物イオン濃度が腐食速度に与える 影響は小さく評価されるのが式(2)の特徴である。

なお,式(2)は,初期塩化物イオンを含むコン クリートから鉄筋の腐食速度を求めた結果であ る。そこで本研究では,次の手順により,海洋 環境にある RC 構造物の腐食速度を算定する。i) 参考文献 1)と同じく,Fick の拡散方程式を解く ことで,鉄筋位置の塩化物イオン濃度を予測す る。その際,鉄筋腐食発生の限界塩化物イオン

濃度, Fick の拡散方程式による塩化物イオンの 拡散予測,かぶり,および塩化物イオンの見か けの拡散係数のバラツキを考慮する。それらの 平均値や変動係数,確率分布形は参考文献 1)と 同じとする。ii)鉄筋腐食の発生以降,経時的な塩 化物イオン濃度Cl の上昇を1年毎に計算し、そ のときのCl⁻を用いて腐食速度を式(2)より計算 する。iii)鉄筋腐食量を腐食速度の時間積分値と して計算する。iv)鉄筋腐食量が式(1)で求められ る腐食ひび割れ発生時点の鉄筋腐食量に達する まで鉄筋腐食発生以降の年数を大きくし, ii)~iii) を繰り返す。なお, ii)と iii)の計算では, 適合度 の検定から, 図-2~図-4 に示す(実験値)/(計算 値)は対数正規分布に従うと仮定とするのが良く, そのパラメータを図-2~図-4に示す統計量か ら決定した。

中川ら¹⁴⁾は、沿岸部の実構造物の調査や暴露 実験から、腐食ひび割れ発生前の腐食速度に関 して、平均値 $V_{\mu,1}=0.19\%/$ 年、変動係数 0.63 を報 告している。海洋構造物の鉄筋腐食速度の数少 ない実測例である。ここでは、中川らの実構造 物の情報を用いて、i)~iv)の過程を Monte Carlo 法(試行回数 n=2,000)により繰返し、腐食ひび割 れ発生時点の腐食量を鉄筋腐食から腐食ひび割 れ発生するまでの期間で除した鉄筋腐食速度 $V_{\mu,2}$ の統計量を得る。それを中川らの実測値と比 較する。その際、構造物位置の飛来塩分量 C_{air} (mdd)は、対象構造物が満潮面から 3m 以内にあ ることを考慮して、 $C_{air}=5.77$ の確定値とし¹⁾、鉄 筋径は全ての場合で 15.6mm, 水セメント比は 50%とした。なお,本検討では,式(1)の(実験 値)/(計算値)は,乾湿繰返実験から作成した図-2 よりパラメータを決めた対数正規分布に従うと した。Monte Carlo 法で得られた $V_{\mu,2}$ の平均値は 0.21%/年,変動係数は 1.70 となった。i)~iv)の予 測値と実構造物の実測値の変動係数を比較する ことは意味をなさないが, $V_{\mu,1} \ge V_{\mu,2}$ は概ね一致 したことから,式(2)により海洋環境下の RC 構 造物の鉄筋腐食速度を評価できると判断した。

3. 腐食ひび割れ発生点を限界状態とした RC 構 造物の耐久信頼性評価

3.1 解析対象地点と飛来塩分量のハザード曲線

北海道江差町と和歌山県串本町にある RC 構造物を対象に腐食ひび割れ発生確率などを算定する。参考文献 1)の確率モデルから求めた飛来塩分量 C_{air} のハザード曲線 $F_s(C_{air})$ を図-6 に示す¹⁾。海風比率や平均風速の違いから、江差町は大変に厳しい塩害環境にあると評価される。

3.2 フラジリティカーブ

ある与えられた Cair を参考文献 1)にある関係 式から表面塩化物イオン濃度 Coに変換し、その 後, 2.3 の i)~iv)のフローに従い, 供用期間 t年 における鉄筋腐食と腐食ひび割れの条件付発生 確率を算定する。 C_{air} と、 C_{air} が作用したとの条 件付で求めた発生確率の関係がフラジリティカ ーブ $F_r(C_{air},t)$ である。条件付発生確率は,限界状 態式 g を g= R-S で定義した場合, g < 0 となる確 率を表しており、本研究では、Rは鉄筋腐食発生 の限界塩化物イオン濃度か腐食ひび割れ発生時 の鉄筋腐食量, S は鉄筋位置の塩化物イオン濃度 か鉄筋腐食量となる。ここでは、水セメント比 45%, Monte Carlo 法における試行回数 n を n=2,000 として供用期間 50 年の $F_r(C_{air},t)$ を評価した。鉄筋 腐食および腐食ひび割れ発生に対するフラジリテ ィカーブをそれぞれ図-7および図-8に示す。

両図より,図-2に示すバラツキの存在下でも, 乾湿繰返実験に基づき式(1)の(実験値)/(計算値) を評価した場合には,鉄筋腐食発生の確率に比

図-9 損傷確率と供用期間の関係(W/C=45%, かぶり 50mm の例)

ベ,供用期間 50 年内に腐食ひび割れが発生する 確率は大きく低減される。一方,電食実験に基 づき式(1)の(実験値)/(計算値)を評価した場合に は、図-3に示されるように、(実験値)/(計算値) の平均値が小さく評価され、また、その変動係 数が図-2 の場合に比べ大幅に大きくなること から、ある飛来塩分量に対し、かぶりと水セメ ント比が同じ場合には、鉄筋腐食と腐食ひび割 れの条件付発生確率の差は小さいものとなる。 実構造物における腐食ひび割れ発生時点の鉄筋 腐食量の大きさに関しては、今後もさらなる実 験的、解析的研究が必要であるが、本研究のよ うな信頼性理論を用いた検討により、その統計 量の改善が RC 構造物の耐久信頼性に及ぼす影 響を定量的に把握できるようになる。

3.3 耐久信頼性評価

ハザード曲線 $F_s(C_{air})$ とフラジリティカーブ $F_r(C_{air},t)$ から, 図-1にある算定式を用いること

で、供用期間 t 年における鉄筋腐食および腐食ひ び割れ発生確率が算定される。海岸線からの距 離を 0.1km としたときの供用期間と各損傷確率 の関係を図-9に示す。飛来塩分量のハザード曲 線の差から、北海道江差町の損傷確率は何れの 場合も大きく算定されることが確認される。

次に,信頼性指標 β=2.0(信頼性指標 βと損傷確

率 pf には $\beta = -\Phi^{-1}(pf)$ (Φ :標準正規分布の累 積分布関数)の関係があり、pf=2.28×10⁻²に相当 する)を確保するための必要かぶりを北海道江差 町を例に海岸線からの距離ごとに算定した。結 果を図-10 に示す。図-9 からも推察されるよ うに,鉄筋腐食の発生確率をβ=2.0となる程度ま で小さくするためには、海岸線からの距離が 1.0km 離れた位置の構造物でも 210mm 程度の大 きなかぶりが必要となる。一方、供用期間内の 鉄筋腐食の発生を許容し,腐食ひび割れが生じ る確率を目標値以下となるような耐久設計を実 施すれば、かぶりを相当に小さくでき、特に図 -2 から腐食ひび割れ発生時点の鉄筋腐食量を 評価すると、鉄筋腐食の発生を限界状態とする 場合に比べ必要かぶりを 1/3 程度にできること が確認される。なお、塩害環境にある構造物の 耐久設計上の限界状態をどのように定めるのか は、鉄筋腐食程度と構造性能との関係の整理な どが必要であり、今後の課題としたい。

4. まとめ

本研究のまとめを以下に示す。

(1) 海洋からの塩分の飛来から,腐食ひび割れの 発生を判定する一連のプロセスに介在するバラ ツキを既往の実験結果などに基づき陽に取り込 み,地域や海岸線からの距離による腐食ひび割 れの発生確率の違いを定量化した。

(2) 耐久設計上の限界状態を鉄筋腐食発生点から腐食ひび割れ発生点に変更し,腐食ひび割れ 発生時点の鉄筋腐食量の統計量を乾湿繰返実験に基づき定めることができるならば,ある目標信 頼性指標(目標限界状態到達確率)を確保する必要 かぶりを相当に小さくできる可能性を示した。

参考文献

- 1) 秋山充良,伊東佑香,鈴木基行:塩害環境下 における鉄筋コンクリート構造物の耐久信 頼性設計に関する基礎的研究,土木学会論文 集 E, Vol.62, No.2, pp.385-401, 2006.6
- 2) Lukuan QI, 関博:鉄筋腐食によるコンクリ

ートひび割れ発生状況及びひび割れ幅に関 する研究,土木学会論文集,No.669/V-50, pp.161-171,2001.2

- 3) 横田優ほか: 塩害により鉄筋が腐食したコン クリートの劣化予測, コンクリート工学年次 論文集, Vol.26, No.1, pp.1041-1046, 2004
- 松島学,横田優,関博:鉄筋腐食膨張による ひび割れ発生時の腐食量,コンクリート工学 年次論文集, Vol.26, No.2, pp.1669-1674, 2004
- 5) 田中大博,横田優,松島学:腐食ひび割れ発生の限界腐食減量に関する実験的研究,土木学会第60回年次学術講演会,5-179,2006.9
- 6) 田森清美ほか:鉄筋の発錆によるコンクリートの ひびわれ性状に関する基礎研究,コンクリート工 学年次論文報告集, Vol.10, No.2, pp.505-510, 1988
- 7) 武若耕司,松本進:コンクリート中の鉄筋腐食が RC部材の力学的性状に及ぼす影響,コンクリー ト工学年次講演会論文集,Vol.6, pp.177-180, 1984
- 8) 桝田佳寛ほか:塩化物を含んだコンクリート中の鉄筋腐食速度に関する実験,日本建築学会構造系論文報告集,第435号,pp.19-27,1992.5
- 9) 鳥取誠一,宮川豊章:初期塩化物イオンの影響 を受ける場合の鉄筋腐食に関する劣化予測,土 木学会論文集,No.781/V-66, pp.157-170, 2005.2
- 10) 松村卓郎ほか:海岸近くの大気中に位置するコンクリート構造物の鉄筋腐食進行評価手法,土木学会論文集, No.634/ V-45, pp.303-314, 1999.11
- 松林裕二ほか:塩化物を含んだコンクリート中の鉄筋腐食速度に関する屋外暴露実験,日本建築学会構造系論文集,第536号,pp.9-15,2000.10
- 12) 森永繁:鉄筋の腐食速度に基づいた鉄筋コン クリート建築物の寿命予測に関する研究,東 京大学学位論文,1986
- (13) 笹渕優樹ほか:塩化物を含んだコンクリート中の 鉄筋腐食速度に関する暴露試験:コンクリート工 学年次論文報告集, Vol.20, No.1, pp.317-322, 1998
- 14) 中川貴之ほか:海洋環境下における RC 構造 物の鉄筋腐食速度の評価、コンクリート構造 物の長期性能照査支援モデルに関するシン ポジウム、pp. 325-330, 2004.10