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ABSTRACT 
The paper is dedicated to proposal of standard tension softening curves by some formulas 
with comparison to experimental data. Knowledge of the tension softening process of 
concrete is essential to understand fracture mechanism, and next to analyze fracture 
behaviour, and further to evaluate properties of concrete. For the last eight years, many 
different tests on uniaxial tension with elimination of secondary flexure have been 
performed in Tohoku Institute of Technology. Based on such results some new equations 
were proposed describing tension softening curves. 
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1. INTRODUCTION 
 
     The application of fracture mechanics for 
the analysis of the concrete structures requires 
understanding the behaviour of concrete under 
tensile loading. The best way to obtain tension 
softening curve is applying tension directly to a 
concrete specimen, because it is possible then to 
obtain immediately both the tensile strength and 
the tension softening curves from specimens 
loaded in a possibly uniform way. The situation 
does not occur in other experiments dedicated to 
tension, such as splitting tests or three or four 
points bending test in which stress-gradient exists. 
     In order to evaluate properties of concrete, it 
is necessary to understand fracture mechanism and 
fracture behaviour, so an analysis of tension 
softening process of concrete is essential. To 
obtain reliable results, the number of problems 
must be resolved to prevent or to minimize the 
secondary flexure. The flexure may impair the 
resulting data, especially the load-deformation 
curve, and affects also various fracture parameters 
that are to be evaluated. Many researchers ignore 
the secondary flexure, [1-2]. Problem was solved 
by Carpinteri et al. in 1994, [3] and next by Akita 
et al. in 2000, when a specially designed adjusting 
gear system has been developed to eliminate the 
secondary flexure, [4-6]. 

     The reduction of the observed peak load or 
tensile strength due to the secondary flexure is 
significant. The reduction easily exceeds 10 % and 
sometimes exceeds even 20 %, [7]. Therefore, it is 
necessary to prevent completely or to minimize 
the secondary flexure for obtaining reliable results. 
Series of the experiments with elimination of the 
secondary flexure in manual and automatic 
operation of adjusting gear system were done, but 
the results with elimination of secondary flexure 
performed by automatically controlled gear system 
are only presented in this paper. Because, the 
automatic operation gives better results for both 
load-deformation curves and tension softening 
curves.  
 
2. UNIAXIAL TENSION TESTS PROCEDURE 
 
     The uniaxial tension tests were performed 
using ordinary concrete, i.e. compressive strength 
is about 30 MPa and the maximum aggregate size 
is 20 mm. The specimen shape is the rectangular 
prism of dimensions 100×100×400 mm. The 
notches introduced to prevent multiple cracks and 
called primary notches were cut on two side faces, 
perpendicular to the cast and bottom planes. 
Besides these, other notches called guide notches 
were made on the cast and bottom faces in order to 
prevent overlapping of cracks.  
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     The important aspect is stability of fracture 
which should be realized by selection of a proper 
load-control system, otherwise the test results will 
be incredible. It was a reason, why experiments 
were performed with the closed-loop loading 
machine that allows ensuring the stable fracture. 
The extensometers, aligned at the centre of the 
prisms, were attached on the all four side faces. 
The adjusting gear system, [4-5] combined with 
the universal joints as shown in Fig. 1 can 
eliminate the secondary flexure which can produce 
a significant error during uniaxial tension testing 
of concrete. 
     The elimination of the secondary flexure 
was realised by some procedure as follows. If one 
side of the specimen is more stretched than the 
opposite side, this side should be contracted. It is 
done by tightening of the adjusting gear fixed on 
this side, and activated until a proper balance in 
elongation is reached. For the operation, it is 
necessary to observe the deformations (elongation) 
on all four sides of the prism under loading. When 
a certain side is stretched and its opposite side is 
already contracted, the opposite side should be 
loosened as not to introduce unnecessary forces 
into the specimen. 
 

 
 
Fig. 1 Adjusting gear system and experimental 

set up 
 
3. PROBLEM OF SECONDARY FLEXURE 
 
     Problems encountered during investigating 
tension-softening behaviour under the uniaxial 
tensile load are unstable fracture, secondary 
flexure, multiple cracks, and overlapping cracks. 
Concrete is a heterogeneous material. It is possible 
to distinguish the aggregates and other parts by 
their properties. The local stress and strain 
gradients appear immediately when an external 

load is applied. Thus, the perfect experiments 
should restrict such influence of disturbance 
caused the load eccentricity and/or a one side 
cracking; this problem was discussed by Hordijk, 
[8] and by Akita [5]. 
     The effect of such secondary flexure can be 
seen in Fig. 2, where an example of a certain 
actual load-deformation curves (diagram P-δ) on 
four side faces is shown. In the case of the 
experiments without the elimination of secondary 
flexure, the load deformation curves are 
misleading because of a harmful influence of such 
flexure. For example, four curves are quite 
different and one side of the specimen was 
compressed.  
     In the case of elimination of secondary 
flexure, all sides of the specimens were elongated 
at the same magnitude and the shape of the curves 
is nearly similar, like in Fig. 3. 
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Fig. 2 An example of the load-deformation 

curves for four side faces, without elimination 
of the secondary flexure 

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3

δ(mm)

P
(k

N
)

 
Fig. 3 An example of the load-deformation 
curves with elimination of the secondary 

flexure 
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     During experiments of uniaxial tension tests 
with elimination of secondary flexure, the 
adjusting gear system introduces additional 
moment and makes the resultant force eccentric. 
However, an eccentric force is a serious problem 
only when it produces stress or strain gradient. In 
the case of these experiments, such the eccentric 
force is no problem, because it eliminates the 
secondary flexure and makes a uniform tensile 
stress distribution in the cross section of the 
specimen. 
     When tension softening curve is analysed, 
crack opening displacement (w) is evaluated by 
the following Equation(1): 
 

r  δδ −−=
EA
PLw        (1) 

 
where, 

          δ : the observed deformation 
P : the applied load 
L  : measuring length 
E : Young's modulus 
A : area of the initial cross section (of 

the ligament) 
δr : residual deformation, when the load 

from the maximum value decreases to 
zero. 

 
     It is assumed that the material outside the 
softening zone behaves elastically after passing 
the maximum load, i.e. when the specimen is on 
the softening branch of the curve. The process of 
evaluation of crack opening displacement was 
described in Fig.4, as shown by schematic 
load-deformation curve.  
 

 
 

Fig. 4 Schematic explanation of the crack 
opening displacement 

     The feature triangle is obtained from 
extrapolation line of the experimental curve at the 
broken point. Tension softening curve is in the 
relationship between σ (cohesive stress: P/A) and 
crack opening displacement (w), and the fracture 
energy was evaluated as the area under the tension 
softening curve. 
     The Young’s modulus is calculated from the 
slope of the P-δ curve in region between 10% and 
65% of the maximum load in the ascending 
branch. 
 
4. DESCRIBING OF TENSION SOFTENING 
CURVES 
 

The investigations were aimed at analysing 
the existing equation describing tension softening 
curves in case of 15 experiments with elimination 
of secondary flexure of concrete by automatically 
controlled gear system, as shown in Fig.5. 
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Fig. 5 Tension softening curves for 15 

specimens 
 
     At the beginning, the existence equations 
describing tension softening curve were checked. 
The first was an algebraic and an exponential term, 
Equation(2), proposed by Reinhardt et al. (1986), 
[9] and the second expression was the power 
function proposed by Li (2002), [10] as 
Equation(3). 
 

σr(w)= { } w)bexp(3w)a(1 ⋅−⋅+  
)b)exp(a(1w 3 −+⋅−    (2) 
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where, 
w : crack opening displacement [mm] 
σr(w) : relative cohesive stress - stress per 

tensile strength 
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     All parameters: a, b, c, d, e in Equations (2), 
(3), and later Equations (4), (5), (6), (7), were 
evaluated through the least square method and 
statistical parameters (R2, chi-squared) by Excel. 
     It was occurred that only Equation(2) could 
predict the present values with good coefficient of 
correlation R2 = 0.997, but it gives too small wc, 
i.e. predicted critical crack opening displacement 
is around 0.23, as shown in Table 1. The average 
crack opening displacement for all experimental 
curves was 0.365, so it was excluded from further 
analysing, because it would not be able to describe 
exactly tension softening curves for analysed 
specimens. It should be noticed that critical 
opening displacement is an important parameter to 
describe a tension softening curve. 
     The equations proposed by Reinhardt, 
Equation(2) and Li, Equation(3) described tension 
softening curve appropriate for their experimental 
results, but occurred not enough for experiments 
with elimination of secondary flexure. 
 
Table 1 Values of evaluated parameters and 

coefficients for the former formulas 
 Equation(2) Equation(3) 
a 21.358 0.011 
b 42.570 1.300 
R2 0.9970 0.9674 

chi-squared 0.0088 0.0074 

wc [mm] 0.23 0.6 
where, 
wc  : critical crack opening displacement 

was evaluated form curves in the 
intersection of abscissa 

 
     The approximated results by Equations(2) 
and (3); are shown in Fig. 6. Open circles show 
the averages of the present 15 curves (original 
data). 
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Fig. 6 Approximation data by former formulas 
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Fig. 7 Parabolic shape of the curves of relative 

cohesive stress 
 

Moreover, it was noticed also that curves at 
the top were rounded like parabola, as shown in 
Fig. 7. So, it was undertaken an attempt on finding 
other expression as in following equations: 
 

 σr(w)=
d
b

dwc
bwa

+
+⋅
+⋅

−1   (4) 

 
  σr(w)= )exp( wba ⋅⋅−1  

cawdc −+⋅⋅+ )exp(     (5) 
 

  σr(w)= )exp( 21 wba ⋅−⋅−  

d
a

dwc
11

−+
+⋅

+     (6) 

 
  σr(w)= )exp( wba ⋅−⋅−1  

d
a

dwc
11

−+
+⋅

+    (7) 

 
     For all examined curves, parameters like 
coefficients of correlation, chi-squared parameters 
and critical crack opening displacement were 
evaluated, as given in Table 2. 
 
Table 2 Values of parameters and coefficients 

 Eq.(4) Eq.(5) Eq.(6) Eq.(7)
a 10.114 114.642 22.156 -0.259
b -0.0004 0.0054 -0.0027 15.378
c 9.575 0.804 45.318 84.884
d 0.203 -51.395 0.950 1.296 
R2 0.9989 0.9954 0.9989 0.9996

chi-squared 0.0026 0.0110 0.0025 0.0019

wc [mm] 0.360 0.310 0.350 0.365 
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     The shapes of approximated curves were 
shown in Fig. 8 and Fig. 9. All of them have very 
good coefficient of correlation and exactly 
describing average data (marked as circles) based 
on 15 specimens. The best one seems to be 
Equation(7), considering wc, R2 and ch-squared in 
Table 2. 
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Fig. 8 Approximation data by examined 

Equations (4) and (5) 
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Fig. 9 Approximation data by examined 

Equations (6) and (7) 
 
     The curves expressed by new formulas were 
in good agreement with original data concerning 
experiments with perfect elimination of secondary 
flexure of concrete. However, the deeper analysis 
of top of curves, shown in Fig. 10 and Fig. 11 let 
propose the Equation(7) as the best one to describe 
the original data. This equation has also the lowest 
chi-squared coefficient, like in Table 2. 
     In the near future an attempt will be made to 
find another way to describe tension softening 
curves based on the present data. Such 
possibilities are given with the approach of 
artificial intelligence methods, which were applied 

with success in previous examinations concerning 
concrete engineering problems, [7, 11]. 
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Fig. 10 Approximation of parabolic shape at 

the top of the curves for Equations (4) and (5) 
of relative cohesive stress 
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Fig. 11 Approximation of parabolic shape at 

the top of the curves for Equations (6) and (7) 
of relative cohesive stress 

 
5. CONCLUSIONS 
 
     Description of tension softening curve by 
some new expressions has been examined. The 
special attention was paid for proper analysing the 
parabola shape at the top of curves to express the 
relationship between relative cohesive stress and 
crack opening displacement. 
     The following conclusions are drawn based 
on the present examinations. 
(1) It was noticed that previous equations 

describing tension softening curve, obviously 
appropriate for the former researches and 
their experimental results, occurred not 
enough for experiments with complete 
elimination of secondary flexure of concrete 
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performed by automatically control gear 
system. 

(2) The curves expressed by new formulas gave 
very good coefficient of correlation – around 
0.999, very low chi-square parameter, nearly 
prediction of critical crack opening 
displacement and also appropriate shape. 

(3) The best prediction of the data including all 
above conclusion seems to be Equation(7), 
like below: 

 

( )
d

a
dwc

wbawr

111 −+
+⋅

+⋅−⋅−= )exp(σ  
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