論文 高温加熱後の超高強度コンクリートの引張強度と付着強度

松戸 正士*1·西田 浩和*1·片寄 哲務*2

要旨:超高強度コンクリートの加熱冷却後の力学的性質に関する基礎データを収集すること を目的とし、引張および付着強度に関する実験を行った。その結果以下のことが分かった。 1)加熱冷却後の引張強度と付着強度は、温度上昇による強度低下の傾向が見られる。2)加熱 冷却後の引張強度は、加熱冷却後の圧縮強度と比例関係にあるが、W/B=15%での加熱温度 300℃以下の範囲では、加熱冷却後の圧縮強度とは比例せず、加熱冷却による影響が大きい。 3)付着強度残存比は、加熱温度が 400℃以上の範囲では加熱冷却後の圧縮強度と比例関係に あるが、加熱温度が 300℃以下の範囲では、圧縮強度と直接の相関が見られなかった。 キーワード:超高強度コンクリート、引張強度、付着強度、圧縮強度、高温加熱後

1. はじめに

近年の高層建築物の更なる高層化により,構 造部材に用いる材料強度は益々上昇傾向にある。 最近では,設計基準強度(以下,Fc)150N/mm²級 のコンクリートの研究開発も多方面で進められ ている中^{例えば1)},Fc=130N/mm²~150N/mm²級のコ ンクリートを用いた超高層建築物が建設された という報告もある。^{例えば2)}

このような超高層建築物では,個々の部材に 非常に大きな荷重が作用しており,火災を受け た後の部材の補修・交換は非常に困難であるこ とが予測される。従って,火災を受けた後の部 材性能を的確に予測する手法,および火災後に そのまま再利用出来る(あるいは軽微な補修で すむ)防火対策手法が必要である。そのために も,火災を受けた後の部材の構成材料の力学的 性質を把握することが重要となる。

本論文は,超高強度コンクリートを用いた鉄 筋コンクリート造建築物の火災後の部材性能を 把握する手法の開発に向けて実施した,超高強 度コンクリートの加熱冷却後の力学的性質に関 する実験結果をまとめたものである。具体的に は,Fc=100N/mm²を超えるコンクリートの加熱 冷却後の引張強度および付着強度に関して検討 した結果を述べる。

2. 実験概要

2.1 実験条件

引張強度実験および付着強度実験の実験条件 を表-1,表-2にそれぞれ示す。引張強度実 験の実験条件は,加熱温度9水準(非加熱を含 む)および水結合材比(以下,W/Bという)2水 準とし,付着強度実験の実験条件は,加熱温度 8水準(非加熱を含む)とした。

2.2 試験体

引張強度実験用の試験体は、「JIS A 1132(コン クリートの強度試験用供試体の作り方)」に準拠 して製作した。試験体は、コンクリート打設後 約48時間(打設の翌々日)で脱型し、高温加熱を 加えるまでは標準養生とした。付着強度実験用 の試験体は、一辺が 64mm(埋め込んだ鉄筋径の 4 倍), 高さ 100mm(同約 6 倍)の直方体状の中央に 鉄筋(D16)を定着筋として埋め込んだ。鉄筋とコ ンクリートの付着区間は試験体の自由端側に設 けた。埋め込み長さは64mm(同4倍)とした。尚, 文献 3)では、試験体の一辺の長さは、埋め込ん だ鉄筋径の6倍を推奨しているが、試験体の一 辺の長さが埋め込んだ鉄筋径の4倍~10倍まで であれば破壊時にコンクリートに働くフープテ ンションはほとんど変わらないこと⁴⁾, 高温度に おいてすべり破壊を起こさないこと5)を考慮し

*1 (株) フジタ 技術センター 主任研究員 工修 (正会員)*2 (株) フジタ 技術センター 研究員 工修 (正会員)

て設定した。また,試験体の載荷側には,載荷 板からの局所応力が付着性状に与える影響を緩 和するために鉄筋径に対して約2倍の非付着区 間を設けた。コンクリートの打設は鉄筋を水平 にして行った。鉄筋の据付方向は,鉄筋のふし が中心軸を含み鉛直に向くようにした。型枠は 材齢1週で脱型し,高温加熱を加えるまで実験 室内での封かん養生とした。

コンクリートの使用材料,調合,高温加熱前 の強度試験結果および鉄筋の力学的性質を表-3~6にそれぞれ示す。

2.3 加熱実験方法

試験体の加熱は、プログラムによる温度調整 機能を有した箱型電気炉(内法:W450×D900× H570mm)を用いた。

引張強度実験用の加熱スケジュールは,予備 実験の結果⁶から昇温速度を 1℃/分,100℃毎の 停滞時間を 100℃および 200℃で 3 時間,300℃ および 400℃で 2 時間,500℃以上で 1 時間とし, 目標温度到達後は,試験体内部温度の均一化を 測るため,上記プラス 1 時間停滞させることと した。付着強度実験用の加熱スケジュールは, 昇温速度を 1℃/分とし,目標温度到達後は,試 験体中心温度が概ね目標温度に到達するまで保 持(2 時間~5 時間)した。目標温度での停滞後 はいずれも自然冷却とした。

加熱実験時の試験体の配置および温度測定位 置を図-1に示す。引張強度実験用ではφ100× 200mm,付着強度実験用では100×100×64mm の試験体中心温度測定用の試験体を配した。

2.4 強度実験方法

引張強度実験は、「JIS A 1113(コンクリートの 割裂引張強度試験方法)」に準拠した。測定は、 100kN 万能試験機による荷重を読み取った。

付着強度実験は、「引き抜き試験による鉄筋と コンクリートの付着強度試験方法(案)」³⁾に準拠 した。加力は単調載荷とし、鉄筋径の2倍の孔 径を有する加圧板上に試験体を据え、球座を介 して鉄筋を引き抜いた(図-2)。また、鉄筋の自 由端でのすべりを測定した。

表-1 実験条件(引張強度実験)

項目	条件	水準数
加熱温度 T(℃)	20(非加熱), 100, 200, 300, 400, 500, 600, 700, 800	9
水結合材比 W/B (%)	15, 25	2

表-2 実験条件(付着強度実験)

項目	条件	水準数
加熱温度	20(非加熱), 100, 200, 300,	0
T(°C)	400, 500, 600, 700	ð

W/B		SP					
(%)	W	В	S	G	(B×%)		
15	150	1000	488	837	1.80		
25	160	640	764	837	0.90		
[使用材料	[使用材料] 水(W):上水道水,セメント(B):シリカフュー						
ム混入セ	メント, 羽	密度 3.08g	/cm ³ ,細竹	骨材(S) :桜	(川産砕砂,		
表乾密度	2.58g/cm	3, 吸水率	£ 1.97%,	粗骨材(G) :桜川産砕		
石 2005,	表乾密度	2.65g/cm ³	,吸水率	0.62%, 湄	昆和剤(SP):		
高性能減	水剤 ポリ	カルボン	一酸系				

表-4	コンクリ	ノートの	使用材料	及び調	合(付着)
·		/ / */			

W/B		単位量(kg/m ³)						
(%)	W	В	S	G	Е	Н	(B×%)	
14	150	1082	417	822	25	5	2.60	
[使用材料] 水(\	N): 上z	水道水	,セメ	ント(B):シ!	リカフュー	
ム混入セ	メント	,密度	ž 3.08g	/cm ³ , i	細骨材	(S) :桜	(川産砕砂,	
表乾密度	2.59g/	cm ³ ,	吸水率	0.60%	6,粗帽	骨材(G):桜川産砕	
石 2005,	表乾額	密度 2.6	65g/cm	³ ,吸7	水率 0	35%,	膨張材(E):	
石灰系膨	張材,	収縮	氐減剤	(H) :ポ	リエー	テル詞	秀導体, 混	
和剤(SP)	:高性俞	追減水 ;	剤,ポ	リカル	~ボン	酸系		

表-5 コンクリートの強度試験結果(加熱前)

W/R	圧縮強度	ヤング係数	強度時歪	試験材齢
W/D	(N/mm^2)	(kN/mm^2)	$(\times 10^{-6})$	(日)
14	175.0	45.99	3990	91
15	176.4	47.38	4133	188
25	136.6	44.70	3698	188

表-6 鉄筋の力学的性質

種類	降伏強度	弹性係数	引張強度
	(N/mm ²)	(kN/mm ²)	(N/mm ²)
D16(USD-685)	792	220.5	971

●試験体中心温度測定用 ← 炉内温度制御用 ・炉内温度測定用

3. 実験結果

3.1 加熱実験

加熱実験による温度測定結果を表-7に,試 験体中心温度履歴を図-3,4にそれぞれ示す。

試験体の中心温度は、各加熱温度到達時点に おいて、目標温度に対して、引張強度実験用の 試験体で-74℃~-33℃、付着強度実験用の試験体 で-45℃~-13℃の範囲にあった。これに対して、 目標温度での停滞時間経過以降では、引張強度 実験用の試験体で-10℃~+3℃、付着強度実験用 の試験体で+3℃~+5℃の範囲にあり、両強度実 験用試験体とも試験体全域に亘りほぼ目標とし た加熱温度を受熱したと考えられる。尚、引張 強度実験用の試験体温度の方が付着強度実験用 の試験体温度と比較して受熱温度が若干低かっ た。これは、使用した電気炉に対して試験体の 数が多かったことが影響しているものと考える。

また,付着強度用試験体の加熱温度400℃の加熱において,3体の内1体の自由端側のコンクリート隅角部において,鉄筋が現れる程度の大きさで,三角錐状に爆裂しているものが見られた。

3.2 引張強度実験結果

引張強度実験結果一覧を表-8に,加熱温度 と引張強度との関係を図-5に,加熱温度と引 張強度残存比(常温時の引張強度に対する各加 熱温度における引張強度の比)との関係を図-6にそれぞれ示す。尚,表-8,図-6には本 実験と同時に加熱し冷却後に圧縮強度実験を実 施した結果⁶⁾を,図-6には既往の加熱温度と引 張強度残存比の関係式^{7),8)}もあわせて示してある。

引張強度は、加熱温度 100℃でやや低下し、同 200℃で回復する傾向を示していた。回復の度合 いは、W/B=25%の方がW/B=15%より大きく、 常温強度と同程度まで回復していた。これは、 加熱冷却後でも、高温蒸気によりコンクリート 中の未水和セメント粒子の水和が促進されたも のと考えられる⁹。また、加熱温度 200℃以下の 範囲では実験値のばらつきも大きかった。一方、 同 300℃以上では加熱温度の増加に伴い強度低 下し、実験値のばらつきも小さくなっていた。

表-7 加熱実験による温度測定結果(単位:℃)

				· · /	
市动	引張強周	度実験用	付着強度実験用		
加索	炉内	試験体中心	炉内	試験体中心	
1皿/文	最高温度	最高温度	最高温度	最高温度	
100	127.8	98.6	108.3	103.1	
200	224.6	190.1	208.2	202.8	
300	321.0	298.6	310.6	304.6	
400	420.8	402.3	406.6	403.4	
500	519.5	502.6	506.7	504.9	
600	616.5	601.5	607.7	604.2	
700	712.8	703.3	706.7	703.8	
800	812.7	799.4	-	-	

引張強度残存比では,加熱温度 200℃までは 0.71~1.07 とばらついていたが,それ以上の加熱 温度では,400℃で 0.6,600℃で 0.3,800℃で 0.2 程度となっていた。これを,加熱冷却後の圧縮 強度実験結果⁶⁾と比較すると,加熱温度 300℃以 降では,W/Bの違いによらず強度残存比はほぼ同 じ値となっていた。一方,加熱温度 100℃および 200℃ではW/Bの違いによる差が生じていた。 W/B=25%においては,引張強度残存比は圧縮強 度残存比とほぼ同じ値であった。しかし, W/B=15%では,引張強度残存比は圧縮強度残存 比より小さい値となっていた。また,既往の関 係式との比較では,加熱温度 300℃以降はほぼ同 じ値となっているが,加熱温度 200℃までは実験 値のばらつきもあり差が生じていた。

図-7に各加熱温度の圧縮強度と引張強度の 関係を示す。ここで,圧縮強度は,本実験と同時に加熱し冷却後に圧縮強度実験を行った結果 ⁶⁾の平均値を用いている。尚,図中には,既往の 高温加熱後の関係式⁷⁾および非加熱の圧縮強度 と引張強度の関係式¹⁰⁾をあわせて示してある。

引張強度は加熱冷却による圧縮強度の低下に 伴い低下する傾向にあったが, W/B の違いによ る差が生じていた。

W/B=25%における引張強度は、加熱冷却後の 圧縮強度の低下に比例して低下する傾向が見ら れ、加熱冷却後の圧縮強度の約 1/20 であった。 これは、文献 7)の関係式と同様の傾向を示して いた。また、加熱温度 300℃以下の範囲に対して、 同 400℃以上の範囲では、文献 10)の関係式より 低い値を示していた。これは、より高温の加熱

	衣 C 开放6550 上相压反入款相木(十岁世)							
加熱温度	引張強度o	$\sigma_t (N/mm^2)$	引張強度	残存比 κ _t	圧縮強度 o	$r_{\rm c}({\rm N/mm^2})^{6)}$	圧縮強度列	隽存比κ。 ⁶⁾
(°C)	W/B=15%	W/B=25%	W/B=15%	W/B=25%	W/B=15%	W/B=25%	W/B=15%	W/B=25%
20	7.78	7.18	1.000	1.000	176.4	136.6	1.000	1.000
100	6.76	6.15	0.868	0.856	172.6	117.6	0.979	0.861
200	7.11	7.20	0.913	1.002	196.8	140.0	1.116	1.025
300	6.46	5.83	0.830	0.811	154.4	115.3	0.875	0.844
400	4.78	4.40	0.614	0.613	103.7	85.7	0.588	0.627
500	4.30	3.18	0.552	0.443	77.6	62.9	0.440	0.460
600	2.55	1.97	0.328	0.274	58.6	44.7	0.332	0.327
700	1.90	1.35	0.245	0.188	37.8	30.8	0.214	0.226
800	1.67	1.05	0.215	0.146	29.5	21.1	0.167	0.154

表-8 引張および圧縮強度実験結果(平均値)

冷却による損傷が影響しているものと思われる。

一方、W/B=15%における引張強度は、加熱温 度が 400℃以上の範囲では、W/B=25%の結果と 同様に、加熱冷却後の圧縮強度の約 1/20 であっ た。しかし、加熱温度が 300℃以下の範囲では、 加熱温度 20℃(非加熱)と 100℃の圧縮強度が ほぼ同じであったにもかかわらず、引張強度に は、約 1N/mm²の差が生じていた。また、W/B=25% では、加熱温度 20℃(非加熱)と 200℃の引張 強度および圧縮強度ともほぼ同じ値であったが、 W/B=15%では、加熱温度 200℃の圧縮強度が 20℃(非加熱)より高いのに対して、引張強度 は逆に低くなっていた。文献 10)との比較におい ても 20℃(非加熱)の結果は文献 10)の関係式と 良い対応を示していたが、加熱温度 100℃~ 300℃の範囲では、1N/mm²前後低かった。

以上より,W/B=15%では,加熱温度 300℃以下の範囲において,加熱冷却後の圧縮強度とは 比例せず,引張強度への加熱冷却による影響が 大きいことが分かった。

3.2 付着強度実験結果

実験結果一覧を表-9に、平均付着応力度-自由端すべり曲線を図-8に、加熱温度と付着 強度の関係を図-9にそれぞれ示す。

常温の試験体を含めて全ての加熱温度で鉄筋 の降伏前に最大荷重に達した。尚,加熱冷却後 の降伏強度が低下する加熱温度 700℃において も鉄筋の降伏には至らなかった。加熱温度 500℃ までの試験体は最大荷重に達した時点で,コン クリートが鉄筋軸を含む面で 2~4 分割に割裂し た。それ以上の加熱温度の試験体は,上記と同 じ位置に大きなひび割れが発生したものの,割 裂までには至らず荷重が徐々に低下した。最大 荷重時の自由端のすべりは,加熱温度が高いも のほど大きくなる傾向を示していた。

付着強度は、加熱温度 400℃まで常温とほぼ同 じ値を示し、それ以上の加熱温度では、加熱温 度の上昇とともに強度低下する傾向が見られた。 付着強度残存比は、500℃で 0.79、700℃で 0.46 であった。

加熱	荷重	付着強度	付着強度	推定圧縮
温度	Р	$\tau_{\rm u,T}$	残存比	強度 σ _{Bi}
(°C)	(kN)	(N/mm^2)	τ _{u,T} / τ _{u,RT}	(N/mm^2)
20	96.8	30.1	1.000	175.0
100	88.7	27.6	0.916	171.3
200	101.5	31.5	1.048	195.3
300	114.6	35.6	1.184	153.1
400	102.9	32.0	1.063	102.9
500	76.7	23.8	0.792	77.0
600	51.4	16.0	0.530	58.1
700	44.4	13.8	0.459	37.5

-553-

推定圧縮強度と付着強度残存比(常温時の付 着強度に対する各加熱温度における付着強度の 比)との関係を図-10に示す。ここで,推定 圧縮強度とは,加熱前の圧縮強度と表-8に示 すW/B=15%の圧縮強度残存比を準用して算出し たものである。また,既往の付着強度実験結果⁵⁾ もあわせて図示した。

付着強度残存比は、加熱温度が400℃以上の範 囲において、加熱冷却後の圧縮強度に比例して 低下する傾向が見られ、加熱冷却後の圧縮強度 の約1/100であった。一方、加熱温度が300℃以 下の範囲では、ばらつきも大きく、圧縮強度と 直接の相関が見られなかった。これは、本実験 方法による付着実験⁴⁾は割裂が主要因であり、圧 縮強度よりは引張強度の影響を多く受けると考 えられる。従って、前節で示したW/B=15%にお けるこの範囲(加熱温度が300℃以下で、残存圧 縮強度が150N/mm²以上の範囲)での引張強度が 圧縮強度と比例関係に無く、より熱影響を受け ていることが関係しているものと思われる。

4. まとめ

設計基準強度が 100N/mm²を超えるコンクリ ートの加熱冷却後の引張強度および付着強度実 験の結果,以下のことが分かった。

- 加熱冷却後の引張強度と付着強度は、温度上 昇による強度低下の傾向が見られる。
- 2) 加熱冷却後の引張強度は、加熱冷却後の圧縮 強度と比例関係(約 1/20)にあるが、W/B=15% における、加熱温度が 300℃以下の範囲では、 加熱冷却後の圧縮強度とは比例せず、引張強 度への加熱冷却による影響が大きい。
- 3) 付着強度残存比は、加熱温度が 400℃以上の 範囲では加熱冷却後の圧縮強度と比例関係 (約 1/100) にあるが、加熱温度が 300℃以下 の範囲では、ばらつきも大きく、圧縮強度と 直接の相関が見られなかった。

しかし,今回の結果は,限られた範囲での実 験結果であり,非加熱の実験結果も含めて多く の実験データの収集が必要であると考える。 参考文献

- 西田浩和,梶田秀幸,梅本宗宏,他: Fc=150N/mm2 級超高強度コンクリートの製造技術に関する実験的研究(その1~3),日本 建築学会大会学術講演梗概集(近畿),A-1, pp.327-332,2005.9
- 柳田裕之,萩原浩,岸本均,梶田秀幸: Fc=130N/nn2のコンクリート鋼板巻き柱を有 する大規模超高層集合住宅の施工,コンクリ ート工学, Vol.44, No.11, pp.51-57, 2006.11
- 村田二郎: 引抜き試験による鉄筋とコンクリートとの付着強度試験方法(案),コンクリート工学, Vol.23, No.3, pp.8-11,1985.3
- 4) 村田二郎,河合糺茲:引抜き試験による異形 鉄筋の付着強度に関する研究,土木学会論文 集,第348号,V-1,pp.113-122,1984.8
- 5) 松戸正士,西田浩和,片寄哲務:高温加熱後 の超高強度コンクリートの力学的性質に関す る実験的研究(引き抜き型付着試験による付 着強度),日本建築学会大会学術講演梗概集 (関東),A-2, pp.13-14, 2006.9
- 6) 松戸正士,西田浩和,片寄哲務,安部武雄: 高温加熱後の超高強度コンクリートの力学的 性質に関する実験的研究,日本建築学会構造 系論文報告集,第603号,pp.171-177,2006.5
- 7) 河辺伸二,一瀬賢一,川口徹,長尾覚博:高 温加熱を受けた高強度コンクリートの強度特 性に関する研究,コンクリート工学年次論文 集, Vol.25, No.1, pp.377-382, 2003.7
- 8)本田義博,大岡督尚,藤巻敏之:高強度コン クリートの耐火性能に関する実験的研究(その1 定常温度の一軸試験),日本建築学会大 会学術講演梗概集(近畿), pp.23-24, 1996.9
- 9) 安部武雄,古村福次郎,戸祭邦之,黒羽健嗣,小 久保勲:高温度における高強度コンクリート の力学的特性に関する基礎的研究,日本建築 学会構造系論文集,第515号,pp.163-168,1999.1
- 野口貴文,友澤史紀:高強度コンクリートの 圧縮強度と各種力学特性との関係,日本建築 学会構造系論文集,第472号,pp.11-16,1995.6