論文 高靭性セメント複合材料を用いた低鉄筋はりの曲げ破壊性状

Ahmed Kamal^{*1}・国枝 稔^{*2}・上田 尚史^{*3}・中村 光^{*4}

要旨:ひずみ硬化型高靱性セメント系複合材料(SHCC)を鉄筋等で補強する適用事例が提案される中,SHCCが引張力を分担できるメリットを活かし,鉄筋量を減らした部材での利用が期待される。本研究では,引張強度が約3MPa,終局時ひずみが約1%のSHCCを用い,鉄筋比が0.08~0.8%程度のはりを対象とし,曲げ破壊を確認するとともに,SHCCの最小鉄筋比について考察する。最大荷重および変形能の観点から,0.13%~0.2%程度の補強材を配置することで,安定した曲げ破壊性状が得られることが明らかとなった。 キーワード:ひずみ硬化型セメント系材料,SHCC,低鉄筋比,曲げ破壊,最小鉄筋比

1. はじめに

曲げを受ける鉄筋コンクリートはり(以下, RCはり)における補強筋量は,耐荷力および変 形性能を含めて,RCはりの破壊挙動を制御する ための最も重要な項目の一つである。例えば, 普通コンクリートに関しては,様々な鉄筋比に おける曲げ破壊性状が実験的に確認されており ¹⁻³⁾,土木学会コンクリート標準示方書構造性能 照査編においても,曲げを受ける部材に関して, 構造細目として0.2%以上の補強筋量を確保する ことを原則としている。

引張力を受けると微細な複数ひび割れを生じ, かつ擬似ひずみ効果挙動を呈するひずみ硬化型 セメント系複合材料 (Strain Hardening Cementitious Composites,以下,SHCC)につい て,性能評価手法,構造利用の可能性に関する 様々な検討が行われている。それ自身で,引張 力を負担し,かつ数パーセントの引張ひずみを 生じるため,鉄筋等の補強材を併用しない適用 事例も数多くあるが,一方で補強材を併用した 適用の可能性も模索されている。SHCC が引張力 を分担できるメリットを活かし,より補強材量 が少ない部材での構造利用が期待される。しか し、曲げを受ける SHCC 部材に対して、特に、 鉄筋量が少ない場合の破壊性状、および安定し た破壊のための最小補強筋量については明らか にされていない。ここでは、鉄筋比の小さい SHCC はりの曲げ破壊挙動の確認、および鉄筋で 補強された SHCC はりに関する最小鉄筋比につ いて考察する。

2. 実験概要

2.1 使用材料

使用した SHCC は、閑田らによって使用され ている Engineered Cementitious Composites(ECC) とし、水セメント比 46%で、PVA 繊維を体積比 で 2.0%混入した配合である⁴⁾。**表**-1に、使用 した SHCC の配合を示す。

材齢 50 日での圧縮強度は 49.9 MPa, 弾性係数 は 18.6GPa であった。また, 試験区間の断面が 30mm×30mm のダンベル型供試体による引張試 験結果を図-1に示す。引張強度および引張強 度時のひずみは, それぞれ 3.5 MPa と 0.5%~1% (検長:100mm)の範囲内にあった。

2.2 供試体の種類

曲げ試験には、鉄筋比の異なる6種類の寸法の

*1	名古屋大学	大学院工学研究科社会基盤工学専攻 (正会員)
*2	名古屋大学	大学院工学研究科社会基盤工学専攻助教授 博士(工学) (正会員
*3	名古屋大学	大学院工学研究科社会基盤工学専攻研究員 修士(工学) (正会員
*4	名古屋大学	大学院工学研究科社会基盤工学専攻教授 博士(工学) (正会員)

表-1 使用した SHCC の配合⁴⁾

水結合材比	結合材比 単位水量		収縮低減材	繊維混入量	目標空気量
W/B	(kg/m^3)	S/B	(kg/m^3)	(%)	(%)
0.46	364	0.64	15	2.0	10

表-2 供試体概要

供試体幅(mm)	50	100	200	300	400	500	
供試体高さ (mm)	180						
供試体長さ(mm)	1700						
鉄筋の種類と本数	D10, 1本						
鉄筋比(%)	0.81	0.40	0.20	0.13	0.10	0.08	
供試体数(体)	無筋:2 有筋:2	無筋:2 有筋:2	無筋:2 有筋:2	無筋:2 有筋:2	無筋:2 有筋:2	無筋:2 有筋:2	

はり供試体を用いた。表-2に,供試体寸法, 鉄筋比,供試体数の一覧を示す。供試体の高さ および長さを,それぞれ 180 mm (有効高さ 150 mm) および 1700 mm の一定とした。供試体の断 面積を変化させるため,表-2に示すように, 供試体幅のみ,6種類に変化させた。各ケースに 関して4体の試験を行い,2体は有筋,2体は無 筋とした(以下,それぞれ有筋供試体,無筋供 試体)。有筋供試体は,D10 鉄筋(SD295A)で 補強した。使用した鉄筋の降伏強度および引張 強度は,それぞれ 360MPa および 510MPa,弾性 係数は 200GPa である。なお,モーメントスパン 内の鉄筋に,50mm 間隔で計 11 枚のひずみゲー ジ(ゲージ長 2mm)を貼付した($\mathbf{図}-3$ 参照)。

載荷試験は,材齢42日~44日の間に実施した。 支間長 1500mm の三等分点曲げ載荷とし,載荷 点の変位と荷重を測定した。有筋供試体の計測 は,載荷点の変位が 50mm を超えた時点で終了 した。

3. 実験結果

3.1 無筋供試体

無筋供試体の荷重-載荷点変位の関係を図-4に、初期ひび割れ発生応力および曲げ強度を 表-3に示す。すべての供試体において、ひず み硬化挙動および多数の微細ひび割れが確認さ

図-1 使用した SHCC の応カーひずみ曲線

表一3	無筋供試体の初期ひび割れ発生応力および曲げ強度
-----	-------------------------

供試体幅	50	100	200	300	400	500
初期ひび割れ発生応力(MPa)	4.2	4.0	4.3	4.6	4.4	4.8
曲げ強度 (MPa)	8.0	7.2	8.2	8.7	6.9	7.4

図-4 無筋供試体の荷重-変位曲線

写真-1 無筋供試体のひび割れ性状(幅100mm)

れた(写真-1参照)。

図-5に、各供試体の幅によって正規化した 初期ひび割れおよび最大荷重の結果を示す。初 期ひび割れ発生荷重と最大荷重に関して、供試 体の幅に対する強度の寸法効果は、本研究にお いては明確ではなかった。図-6に、初期ひび 割れ発生荷重およびその時の変位で正規化した 荷重-変位関係を示す。これによると、供試体 幅 50mm から 300mm までの供試体では、ひび割 れ発生荷重の 2 倍程度までひずみ硬化がみられ るのに対し、供試体幅 400mm および 500mm で は、1.5 倍程度までとなっており、ひび割れ発生

図-6 無筋供試体の正規化荷重-変位関係

荷重と最大荷重の関係においては、供試体寸法 の強度に対する影響がわずかにみられる結果で あった。

最大荷重時の変位に関しては,供試体幅 50mm および 100mm の場合の値が, 5mm 程度であり, その他のケースに比べてやや小さく,写真-2 に示すように,供試体内に発生したひび割れも, 局所化していることが確認された。この点につ いての詳細な考察は,次章にて行う。

3.2 有筋供試体

有筋供試体の荷重-変位関係を図-7に示す。 供試体の幅が比較的大きい場合には,最大荷重

写真-2 ひび割れ図(上:幅100mm,下:幅50mm)

図-7 有筋供試体の荷重-変位曲線

以降に,急激な荷重の低下が生じる供試体も確認された。さらに,供試体幅500mmの場合,供 試体2体のうちの1体は,載荷試験の途中(変位約50mm)で鉄筋が破断した。有筋供試体の場 合においても,多数の微細ひび割れが確認できた。図-8に,供試体の幅によって正規化した 初期ひび割れ発生荷重および最大荷重を示す。 供試体幅が小さくなるほど,正規化した最大荷 重および初期ひび割れ発生荷重が増加し,補強筋の効果が確認できる。

4. 曲げが作用する SHCC はりの最小鉄筋比に関 する考察

4.1 荷重の観点

図-9は、有筋および無筋供試体の正規化最 大荷重の比較を示すものである。鉄筋比が比較 的小さい場合(幅 300mm: 0.13%,幅 400mm: 0.10%,幅 500mm: 0.08%),鉄筋の有無による はり供試体の耐荷力の相違は 10%以内であった。 耐荷力に関しては,有筋供試体の最大荷重を無 筋供試体の最大荷重よりも明らかに大きくする 必要がある場合,本実験の範囲内では,鉄筋比 を 0.13%よりも大きくする必要がある。

図-10 に、最大荷重およびその時の変位で各 荷重-変位曲線を正規化したものを示す。これ によると、最大荷重を呈した後、SHCC のひび割 れが局所化することで、引張応力の負担分が減 少し、鉄筋量に依存した荷重レベルで変形が進 行していく。その際の荷重の大きさは、鉄筋比 0.2%(幅 200mm)で最大荷重時の 50%、鉄筋比 0.08%(幅 500mm)で 30%程度まで低下する。 例えば、最大荷重以降も 50%までの耐力低下を

図-12 鉄筋ひずみの計測結果

安定した破壊と想定した場合,鉄筋比を 0.2%よりも大きくする必要がある。

4.2 変形能の観点

終局時の変形性能に関して,最大荷重におけ る有筋供試体の変位を無筋供試体と比較した結 果を図-11 に示す。最大荷重における鉄筋供試 体の変位は、供試体の幅が大きいほど、すなわ ち鉄筋比が小さいほど減少した。本実験の範囲 内では、無筋の変形性能と同様の変形性能を得 るためには、鉄筋比が 0.2%(幅:200 mm)を上 回っている必要がある。ひび割れ部の鉄筋が降 伏するプロセスにおいて、複数あるひび割れ部 のうちの1箇所の鉄筋が降伏すると仮定する。 鉄筋比が小さい場合には,ひび割れをまたぐ鉄 筋のひずみが大きくなり,SHCCのひび割れ幅の 開口を加速すると思われる。一方,その他の部 分の鉄筋はSHCCにより十分に補強されている ため,先に降伏した部分の変形がますます大き くなるとともに,SHCCのひび割れ幅も増大し, 局部破壊が生じるというメカニズムが考えられ る。なお,鉄筋量が小さいほど,この現象が顕 在化したものと思われる。このようなメカニズ ムに関しては,従来の鋼繊維補強コンクリート はり(繊維長30mm,繊維混入量2%)において も,繊維の混入によって,破壊の局所化が生じ やすくなる可能性が指摘されている⁵⁾。

図-12 に、鉄筋に貼付したひずみゲージのう ち、載荷点直下にて計測した 2 点を除く計 9 点 の結果について、鉄筋ひずみと載荷点変位の関 係として示す。なお、これらの図では、各供試 体の最大荷重時の変位を横軸の最大値として示 している。供試体幅 100mm および 300mm の場 合には、モーメントスパン内の鉄筋ひずみは急 激に増加し、ほぼすべてのゲージ位置にて鉄筋 が降伏していることを示しているが、最大荷重 時の変位が小さかった供試体幅 400mm および 500mm の場合には、一部に降伏していない箇所 が認められた。

5. 結論

引張強度が約 3MPa,終局時ひずみが約 1%の SHCC を用いた低鉄筋はりの曲げ試験により得 られた知見を以下にまとめる。

- (1) 無筋供試体の初期ひび割れ発生荷重と最大 荷重に関して、供試体の幅の寸法がこれらの 強度に及ぼす影響は確認されなかった。
- (2) 鉄筋比が小さい SHCC はりでは,最大荷重以降,荷重が急激に低下する傾向にあった。
- (3) 鉄筋比が比較的小さい場合(0.13%, 0.10%, 0.08%), 鉄筋の有無によるはり供試体の耐荷力の相違は10%以内である。耐荷力に関して,

有筋供試体の最大荷重を無筋供試体のそれ よりも大きくする必要がある場合,本研究で は鉄筋比を 0.13%より大きくする必要がある。

(4) 有筋供試体について、最大荷重時に生じる変位は、鉄筋比が小さいほど減少した。最大荷重時に生じる変位について、無筋供試体と同程度の値を得るためには、鉄筋比を 0.2%より大きくする必要がある。

謝辞

本実験は、土木学会「複数微細ひび割れ型繊 維セメント複合材料の指針作成小委員会(六郷 恵哲委員長)」から支援いただいた。また、鹿島 建設 閑田徹志氏および港湾空港技術研究所 岩 波光保氏に多大なるご協力をいただいた。ここ に記して謝意を表す。

参考文献

- 1) 島弘,二羽淳一郎,岡村甫:曲げを受ける低 鉄筋比はりにおける脆性破壊の防止に関す る検討,土木学会論文集,378/V-6,pp.231-237, 1987
- 2) 池田尚治、山口隆裕尋、後藤康之:鉄筋比の 小さい鉄筋コンクリートはりの曲げ挙動に 関する研究、コンクリート工学論文集、Vol.1、 No.1、pp.51-59、1990
- 瀬古繁喜,内田裕市,六郷恵哲,小柳洽:鉄 筋比が小さい RC はりの曲げ破壊性状,コン クリート工学年次論文報告集, Vol.13, No.2, pp.255-258, 1991
- 4) 閑田徹志ほか:曲げ試験を用いた高靭性複合 材料 ECC の引張力学性能管理に関する実験 的検討,鹿島技術研究所年報,第 52 号, pp.131-132,2004
- Uchida, Y. and Ozawa, M. : Tension Stiffening Effect in RC Beams with Steel Fiber, Modeling of Inelastic Behavior of RC Structures under Seismic Loads, Committee Report, ASCE, pp.521-535, 2001